

Exclusive Control for Compound Operations

On Hardware Transactional Memory

Keisuke MASHITA†, Anju HIROTA†, and Tomoaki TSUMURA†

†Nagoya Institute of Technology, Japan

Summary

 Hardware Transactional Memory (HTM) is

a promising mechanism for multi/many-core programming.

 A read variable will often be written before long,

and this severely degrades the performance of TMs.

 We propose a transaction scheduling for mitigating this

with very simple implementation.
The total execution cycles are reduced

72.2% at a maximum, and 17.5% on average.

The required additional hardware cost is only 512 Bytes.

Compound Ops lead to Futile Stalls

 Typical HTM scheduling
When a thread tries to access

a shared variable, the thread

sends a request to detect a conflict.

 If a thread detects deadlock,

the thread aborts its transaction.

Read-after-read (RaR) accesses

cause no conflict. However, many read

accesses are followed by write accesses

to the same addresses.

 Many Futile Stalls are caused by such an access pattern.

 (e.g. in Compound Operations)
Many transactions have such compound operations.

(e.g. increment, decrement, and compound assignment operation)

 Many aborts are caused by Compound Operations.
 Compound Operations degrade the performance of HTM.

Performance Evaluation

 Simulator
Simics : Full system simulator (SPARC-V9, Solaris10)

GEMS : Memory system simulator

The proposed scheduling prevents Futile Stalls and aborts.

Especially, in Deque, abort is never caused with our scheduling.

LogTM is one of the most

general HTM systems.

* J. Bobba et al : Performance Pathologies in Hardware Transactional Memory, Proc.34th ISCA

Comparison between our proposal and Store Predictor*

 Store Predictor is one of the existing work for solving

bad influence of RaR accesses.
Unlike our proposal, even once an address is managed by

Store Predictor, all accesses to the address are stalled.

This leads to serious performance degradation in Btree,

because of unnecessary serialization.

The execution cycles of

the slowest thread in 16 threads.

Percentage of the aborts caused by Compound Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Others Compound Operations

0

2

4

6

8

10

12

Abort_ovh

Stall

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Abort_ovh Stall

Good_trans Non_trans

GEMS microbench SPLASH-2 STAMP

Btree Contention Prioqueue Deque Barnes Raytrace Vacation

(S) Store Predictor

 (P) Proposal

(B) LogTM（Baseline）

Cholesky Radiosity Kmeans Btree

…
 BEGIN_TRANSACTION
 if (array[key] != index){ /* array[key] is read */
 array[key] = index; /* array[key] is written */
 }
 COMMIT_TRANSACTION
…

The part of the transaction in Prioqueue

Managing w/ a Flag in Each Cache Line

 We propose a very simple implementation.
Only an additional 1-bit flag (called C-bit) is required

for each cache line.

 If an RaR access to an address is expected to be followed by a write

access, the transactions are serialized.

Stall is shorter than

typical HTM scheduling.

L1Cache

C R W addr

0 0 0 -

C-bit represents that the address has been

accessed by a compound operation

Each cache line has these bits for

conflict detection on general HTM

test the C-bit and detect a compound operation

C R W addr

1 1 0 A

We aim to solve these problems by a transaction scheduling

 with practical light-weight implementation.

As a result, Futile Stall is caused even if an RaR access is allowed.

Both transactions can Commit.

load A load A

store A

Abort

Req.A

Nack
S

ta
ll

store A

Futile Stall

store A

Commit

Restart

Req.A

Ack

Req.A

Nack

Req.A

Ack

Commit

load A

Commit

S
ta

ll

store A

load A

load A

store A

Req.A

Nack

Req.A

Ack

