

Exclusive Control for Compound Operations

On Hardware Transactional Memory

Keisuke MASHITA†, Anju HIROTA†, and Tomoaki TSUMURA†

†Nagoya Institute of Technology, Japan

Summary

 Hardware Transactional Memory (HTM) is

a promising mechanism for multi/many-core programming.

 A read variable will often be written before long,

and this severely degrades the performance of TMs.

 We propose a transaction scheduling for mitigating this

with very simple implementation.
The total execution cycles are reduced

72.2% at a maximum, and 17.5% on average.

The required additional hardware cost is only 512 Bytes.

Compound Ops lead to Futile Stalls

 Typical HTM scheduling
When a thread tries to access

a shared variable, the thread

sends a request to detect a conflict.

 If a thread detects deadlock,

the thread aborts its transaction.

Read-after-read (RaR) accesses

cause no conflict. However, many read

accesses are followed by write accesses

to the same addresses.

 Many Futile Stalls are caused by such an access pattern.

 (e.g. in Compound Operations)
Many transactions have such compound operations.

(e.g. increment, decrement, and compound assignment operation)

 Many aborts are caused by Compound Operations.
 Compound Operations degrade the performance of HTM.

Performance Evaluation

 Simulator
Simics : Full system simulator (SPARC-V9, Solaris10)

GEMS : Memory system simulator

The proposed scheduling prevents Futile Stalls and aborts.

Especially, in Deque, abort is never caused with our scheduling.

LogTM is one of the most

general HTM systems.

* J. Bobba et al : Performance Pathologies in Hardware Transactional Memory, Proc.34th ISCA

Comparison between our proposal and Store Predictor*

 Store Predictor is one of the existing work for solving

bad influence of RaR accesses.
Unlike our proposal, even once an address is managed by

Store Predictor, all accesses to the address are stalled.

This leads to serious performance degradation in Btree,

because of unnecessary serialization.

The execution cycles of

the slowest thread in 16 threads.

Percentage of the aborts caused by Compound Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Others Compound Operations

0

2

4

6

8

10

12

Abort_ovh

Stall

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Abort_ovh Stall

Good_trans Non_trans

GEMS microbench SPLASH-2 STAMP

Btree Contention Prioqueue Deque Barnes Raytrace Vacation

(S) Store Predictor

 (P) Proposal

(B) LogTM（Baseline）

Cholesky Radiosity Kmeans Btree

…
 BEGIN_TRANSACTION
 if (array[key] != index){ /* array[key] is read */
 array[key] = index; /* array[key] is written */
 }
 COMMIT_TRANSACTION
…

The part of the transaction in Prioqueue

Managing w/ a Flag in Each Cache Line

 We propose a very simple implementation.
Only an additional 1-bit flag (called C-bit) is required

for each cache line.

 If an RaR access to an address is expected to be followed by a write

access, the transactions are serialized.

Stall is shorter than

typical HTM scheduling.

L1Cache

C R W addr

0 0 0 -

C-bit represents that the address has been

accessed by a compound operation

Each cache line has these bits for

conflict detection on general HTM

test the C-bit and detect a compound operation

C R W addr

1 1 0 A

We aim to solve these problems by a transaction scheduling

 with practical light-weight implementation.

As a result, Futile Stall is caused even if an RaR access is allowed.

Both transactions can Commit.

load A load A

store A

Abort

Req.A

Nack
S

ta
ll

store A

Futile Stall

store A

Commit

Restart

Req.A

Ack

Req.A

Nack

Req.A

Ack

Commit

load A

Commit

S
ta

ll

store A

load A

load A

store A

Req.A

Nack

Req.A

Ack

