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Abstract—Convolutional Neural Networks (CNNs) have
achieved high classification accuracy in image recognition, and
now, they are widely used for numerous applications. For
higher accuracy or more advanced applications, CNNs need to
consume tremendous computational resources and time. Hence,
many studies for reducing the computational cost of CNNs are
actively being conducted. However, many previous methods for
reducing the computational cost lead to a non-negligible loss in
output accuracy. Therefore, it is still a challenge to reduce the
computational cost of CNNs with keeping the output accuracy
high. In this paper, we propose a novel concept “Functionally-
Predefined Kernel” to reduce the computational cost for CNN
training and discuss the potential of computation reuse to reduce
the computational cost for CNN inference. Our experimental
results show that the number of parameters to be trained can be
significantly reduced by utilizing Functionally-Predefined Kernels
without accuracy loss. In addition, we revealed that CNN’s
inference process includes many convolution operations with the
same inputs and computation reuse, therefore, has high affinity
to CNN computation.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved high
classification accuracy in image recognition, and now they
are widely used for numerous applications such as face
recognition, character recognition, and pedestrian detection in
automated driving. CNNs significantly improve the recognition
accuracy as they scale in both width and depth; consequently,
both execution time and energy required for CNN computa-
tion, especially for the training process, which needs a consid-
erable amount of computational resources and time in general,
are increasing. To address this problem, many techniques
that approximate CNN computation have been developed to
reduce the computational cost. However, depending on the
degree of approximation, these approaches drop some critical
information included in the original CNN, thereby showing
the significant reduction in the recognition accuracy, which is
intolerable to some classes of applications.

In this paper, we aim to improve both training and in-
ference time for CNNs while maintaining the recognition
accuracy. To reduce the training cost, we propose a new
concept called Functionally-Predefined Kernel, which reduces
learnable parameters in CNN by exploiting a set of primal
kernels needed for feature detection. Additionally, combining
Functionally-Predefined Kernel with computation reuse can
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Fig. 1. Operations in a convolutional layer

reduce the inference cost. Our experimental results show that
Functionally-Predefined Kernel has an excellent potential to
reduce both training and inference cost of CNNs.

II. CONVOLUTIONAL NEURAL NETWORKS

CNN is a neural network that has multiple structurally-
unique layers called convolutional layers. A convolutional
layer has multiple two-dimensional parameter arrays called
kernels. Each convolutional layer receives multiple two-
dimensional images called feature maps as its input, and then
outputs multiple new feature maps generated by convolving
the input feature maps with the kernels. CNN sequentially
performs this step for a given input image with the help
of stacked convolutional layers, allowing to achieve high
recognition accuracy.

Each input feature map is convolved with multiple kernels.
Convolution is an operation that computes element-wise mul-
tiplication of an input feature map and a kernel and then
sums up the result into an output feature map. Figure 1
shows operations performed in a convolutional layer with
multiple kernels. As shown in the figure, the convolutional
layer generates F output feature maps by convolving an input
feature map of X × X with F kernels of A × A in each.
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In this example, the element located in the upper left of the
top output feature map is calculated by convolving the upper
left 3× 3 region in the input feature map with the top kernel.
The other elements in the output feature map are computed
by repeatedly moving the kernel over the input feature map
and performing the above operation.

Values of kernels used in convolutional layers are deter-
mined through training. In a training process, kernel parame-
ters are repeatedly updated for a set of training data based on
errors between CNN’s and correct outputs.

Both training and inference perform a large number of
product-sum operations in the convolutional layers, and reduc-
ing this computational cost is, therefore, an important issue. To
make matters worse, in recent years, the numbers of layers and
kernels within one CNN tend to increase in order to improve
recognition accuracy, thereby increasing computation amount
and data required for training and inference. For example,
the numbers of parameters used and product-sum operations
performed in the convolution layers included in AlexNet [1],
which was proposed in 2012, are 2.3M and 666M, respectively,
while VGG-16 [2], which was proposed in 2014, has 14.7M
parameters and 15.3G product-sum operations. Moreover,
training ResNet [3], which was proposed in 2015 and has 152
convolutional layers, for ImageNet [4] spent several weeks
even on a computer equipped with multiple GPUs. As another
example, VGG-16 takes 10.67ms [5] to calculate the output
for one input image using GPUs, while AlexNet takes only
0.54ms. This increase in computation time is an obstacle to
using CNNs, especially for real-time applications that need
to be executed under severe timing and resource constraints.
Therefore, it is required for CNNs to calculate their outputs
in a short time while keeping the recognition accuracy.

III. RELATED WORK

Many studies have been done for accelerating training and
inference in CNNs. We summarize them in this section.

A. Parameter Quantization

One approach to reducing the computational cost of CNN
is to quantize the parameters. For example, in XNOR-NET[6],
each multiplication performed through training and inference
is replaced with a simple XNOR operation by limiting input
values and weight parameters to the binary values of +1
and −1. The authors of XNOR-NET reported that parameter
quantization can reduce parameter size and inference time by
1/32 and 1/52 for a CNN, respectively. As another approach
to quantizing parameters, it has been proposed to replace each
multiplication with a shift operation by expressing weights as
binary logarithms [7].

While parameter quantization reduces the computation cost
of CNNs, it rounds trained parameters to a small set of
low-precision values depending on quantization policies. As
a result, CNNs with parameter quantization often show a
significant drop in the recognition accuracy, which is not
negligible for some applications.

B. Hardware Acceleration

Use of hardware accelerators is beneficial to reducing the
computation time of CNNs. One example is DianNao [8],
a many-core accelerator that performs high-speed inference
for large-scale CNNs. A core consists of an input and output
buffers, a weight buffer, and an NFU (Neural Functional Unit)
equipped with many product-sum operation units. Input/output
feature maps and kernels included in CNN are stored into
the three on-chip buffers to reduce the data movement cost.
Furthermore, the NFU performs many product-sum operations
in parallel for high-speed inference. However, this approach
needs a number of cores and product-sum operation units
to quickly perform many convolution operations required for
large-scale CNNs, resulting in an increase in circuit area and
power consumption.

C. Parameter Clustering

We proposed kernel clustering to reduce the computational
cost of CNNs [9]. Our approach is based on the observation
that many kernels trained with different CNN architecture
and/or datasets often have similar values. This nature motivates
us to cluster kernels included in a trained CNN for reducing
the computational cost. More specifically, computation at
convolutional layers can be commonized for each cluster by
replacing each kernel in a cluster with the representative kernel
in the cluster. Since this commonized computation can be
performed in many CNNs, we developed an accelerator that
employs hardware specialized for the above computation.

Throughout this study, we found that kernels with similar
functions exist among various CNNs and then foresee that
functions that extract simple features such as edges and blobs
would be included in any trained CNN, producing an idea that
we can predefine some kernels.

D. Reduction in Learnable Parameters

Shrinking learnable parameters within CNNs is a practical
approach to reduction in the training cost. Based on this
direction, Juefei-Xu et al. proposed Local Binary Convolution
(LBC) [10], which enables to replace convolutional layers
with LBC layers. Networks obtained through the replace-
ment are called Local Binary Convolutional Neural Networks
(LBCNNs). An LBC layer comprises of some fixed sparse
predefined binary convolutional kernels, a non-linear activation
function, and a set of 1×1 kernels. While the 1×1 kernels are
learnable (i.e., updated during a training process of LBCNN),
the binary convolutional kernels are not. Therefore, the LBC
layer significantly saves the number of learnable parameters
when compared to the original convolutional layer.

Values of binary convolutional kernels are determined based
on Local Binary Patterns (LBPs). LBP is a simple yet powerful
descriptor derived from the face recognition field and is widely
used in pattern recognition and image processing applications.
The method to compute LBP features is shown in Fig. 2.
When calculating LBP features, first a part of the image is
cut out as a patch, as shown on the left and center in Fig. 2,
and then the luminance of the central pixel in the patch is
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Fig. 2. LBP features

compared with that of the neighboring pixels. The computation
result is set to 1 if the luminance of a neighboring pixel is
greater than that of the central pixel, while it is set to 0 if
not, as shown on the right in Fig. 2. Finally, a bit string of
the computation results is read sequentially and mapped to a
decimal number as the LBP feature value of the central pixel.
Based on this idea, the LBCNN’s approach creates a kernel
where each parameter is set to 0 or ±1 randomly selected
according to the sparsity specified. This randomly generated
kernel is used as a predefined kernel in the LBC layer.

LBCNNs have fewer learnable parameters than conven-
tional CNNs but show the recognition accuracy comparable
to the conventional CNNs in most cases. The authors of
LBCNN demonstrate, both theoretically and empirically, that
LBC layers are good approximation of convolutional layers.
Moreover, the authors show that LBCNN achieves the almost
same recognition accuracy as conventional CNNs for MNIST,
SVHN, CIFAR-10, and ImageNet datasets while reducing the
computational cost significantly.

We move forward with this idea as Functionally-Predefined
Kernel, which uses simple but meaningful kernels to extract
typical features such as edges and blobs, instead of randomly
generated kernels. We consider that the use of Functionally-
Predefined Kernel leads to a further reduction in the train-
ing cost of CNNs while maintaining the recognition accu-
racy when compared to LBCNN. In addition, Functionally-
Predefined Kernel can reduce the inference cost of CNNs with
the help of computation reuse, because many multiplications
performed in convolution operations have the same input due
to the binary parameters used in Functionally-Predefined Ker-
nels, as described in Sec. IV-B. Thus, Functionally-Predefined
Kernel is a more promising approach to reducing the compu-
tational cost of CNNs.

IV. FUNCTIONALLY-PREDEFINED KERNEL

In this section, we introduce the concept of Functionally-
Predefined Kernel and how to reduce the kernel parameters to
be trained.

A. Outline

In respect of organic brains, it is known that a part of
the primary visual cortex has a function to respond to and
recognize an edge in a specific direction. On the other hand, in
well-trained CNNs, it is generally known that simple features
are extracted in the former convolutional layers, and more
abstracted information is extracted in the latter layers [11].
Practically, a well-trained CNN often has kernels that seem
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Fig. 4. Kernels specialized for extracting simple features

to be in charge of simple feature detection such as edges or
blobs (Fig. 3), in former layers.

Assuming that such kernels are actually trained to un-
dertake edge- or blob-detection, any CNN application may
need to obtain such kernels by time-consuming CNN training,
and pre-trained or pre-defined fixed kernels for such simple
feature detection can contribute to low computation cost
for CNN training. In this paper, we define portable kernels
that are specialized to detect simple features (Fig. 4) and
call them Functionally-Predefined Kernels. The parameters in
Functionally-Predefined Kernels are permanently fixed, and
not updated through CNN training.

Functionally-Predefined Kernel reduces the training cost of
CNNs as follows. CNN usually has to do a complicated and
time-consuming process to adjust the parameters to the optimal
values. More specifically, it, also known as a gradient descent
method, needs to repeatedly compute a partial derivative of a
given loss function with respect to each parameter for a given
training dataset. We can skip this process for fixed parameters
when training CNNs with Functionally-Predefined Kernels so
that the training cost can be reduced.

B. Experimental Setup

We evaluated the effect of Functionally-Predefined Kernel
on recognition accuracy and learnable parameter count of
CNNs. We use Chainer [12] as a deep learning framework,
and train two CNNs with MNIST [13] and CIFAR-10 [14],
respectively. Figure 5 shows our CNN architecture trained with
the MNIST dataset, while Fig. 6 shows our CNN architecture
trained with the CIFAR-10 dataset.

We use the 25 patterns shown in Fig. 7 as Functionally-
Predefined Kernels. These kernels are determined based on
Higher-order Local Auto-Correlation (HLAC) [15], which is
a statistical feature for image recognition and satisfies position
invariance and additivity. The practicality of HLAC is demon-
strated with some applications such as object detection[16]
and gesture recognition[17]. We embed these 25 kernels in
the first convolutional layer within each CNN and then fix
these parameters through training.
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Fig. 5. CNN architecture for MNIST dataset
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Fig. 6. CNN architecture for CIFAR-10 dataset

Since mask patterns used in HLAC are represented with
binary values of 0 and 1, we use two values for the elements of
Functionally-Predefined Kernels. Here, initial values randomly
generated by Chainer follow a Gaussian distribution that
has a mean of 0 and a variance of 1/

√
fan in (fan in:

number of inputs) so that about 99.7% of these values are
in the range of [−3/

√
fan in, 3/

√
fan in ] theoretically.

Therefore, we decided to use ±3/
√
fan in as the element

values of Functionally-Predefined Kernels. In Fig. 7, black el-
ements represent 3/

√
fan in, while white elements represent

−3/
√
fan in.

C. Experimental Results

Figures 8 and 9 show the recognition accuracy of the CNNs.
Figure 8 represents the case that the CNN shown in Fig. 5 is
trained with the MNIST dataset, while Fig. 9 represents the
case that the CNN shown in Fig. 6 is trained with the CIFAR-
10 dataset. The vertical axes represent recognition accuracy,
while the horizontal axes represent the number of epochs. The
two orange lines shown in each figure represent the CNN with
Functionally-Predefined Kernel, while the two green lines rep-
resent the CNN without Functionally-Predefined Kernel. The
solid and dashed lines represent Top-1 and Top-3 accuracy,
respectively.

Both figures show that the recognition accuracy of the CNNs
with Functionally-Predefined Kernel is slightly lower that of
the CNNs without Functionally-Predefined Kernel at the end
of training. We observed a decrease of only 0.08% and 1.57%
in Top-1 recognition accuracy for MNIST and CIFAR-10,
respectively, while 0.002% and 0.42% in Top-3.

TABLE I shows the number of learnable parameters in
the first layer of the CNN shown in Fig. 5 with and with-
out Functionally-Predefined Kernel. The table shows that
Functionally-Predefined Kernel can reduce the learnable pa-
rameter count by about 78% (i.e., from 864 to 189). From
these results, though our experiment is still preliminary, we
think Functionally-Predefined Kernel is effective to reduce the
computational cost of CNNs while keeping the recognition
accuracy.

Fig. 7. Functionally-Predefined Kernels based on HLAC
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Fig. 8. Accuracy (MNIST dataset)

V. COOPERATING FUNCTIONALLY-PREDEFINED KERNELS
WITH COMPUTATION REUSE

In this section, we describe the affinity of computation
reuse to the inference processing and estimate how much the
amount of computation needed for inference can be reduced
by utilizing computation reuse together with Functionally-
Predefined Kernels.

A. Computation Reuse for Inference

Computation reuse is a technique that accelerates applica-
tions by omitting redundant computation. It stores a pair of an
input sequence and an output of a computation block, such as
a function, into a buffer and avoids re-compututation for the
block by reusing the preserved output when the current input
sequence matches the preserved input sequence. Computation
reuse was initially developed as a programming technique that
accelerates frequently-executed functions such as recursive
functions in functional languages, but now it extends to
hardware. There exist various granularities of computation
reuse at hardware level, i.e., from instruction to function and
loop level.

An inference process of CNN is an application well-suited
for computation reuse. In the field of image processing,
pixels located nearby each other show similar values in gen-
eral; therefore, in an input feature map of CNN, there are
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TABLE I
LEARNABLE PARAMETER COUNT IN THE FIRST CONVOLUTIONAL LAYER

CNN Learnable parameter count
CNN w/o Functionally-Predefined Kernel 864
CNN w/ Functionally-Predefined Kernel 189

many elements that have similar values. In addition, when
Functionally-Predefined Kernel is applied to CNN, kernels can
be represented as the combinations of the limited number
of values (±3/

√
fan in). This means that a convolution

operation possibly includes many multiplications that have the
same combination of a multiplier and a multiplicand.

One example in this direction is the study conducted by
Jiao et al., computation reuse with approximate matching
for multiplication in CNN computation [18]. This approach
statically analyzes a trained CNN to find multiplication pat-
terns frequently-executed during convolution operations and
records pairs of their inputs and outputs. With this record,
it removes redundant multiplication included in the inference
process of the CNN by approximately matching the inputs of
a reuse-targeted multiplication with the recorded inputs. More
specifically, only the upper nine bits of input values, or only
the exponent field bits of 32-bit floating point, are used for
the comparison. If both inputs of a targeted multiplication
are approximately equal to those of the recorded inputs,
the execution of the multiplication can be omitted with the
corresponding recorded output. The authors report that it can
save 80% of the overall multiplications in the inference for
the MNIST dataset.

Similar to this approach, Functionally-Predefined Kernel
limits input patterns for multiplications included in convo-
lution operations and therefore increases an opportunity to
reuse the computation results. One advantage of Functionally-
Predefined Kernel over the previous work is that we can
optionally use complete matching instead of approximate
matching to check the availability of computation reuse.
Since Functionally-Predefined Kernels have binary values,
convolution operations included in CNNs with Functionally-
Predefined Kernels are more likely to perform multiplications

TABLE II
NUMBER OF COMBINATIONS OF MULTIPLIER AND MULTIPLICAND

(BASELINE)

Number of appearances Quantization degree
fixed8 float16 float32

1–5 14215.2 96793.6 102700.0
6–10 8101.7 28584.9 29299.1

11–50 16622.8 15218.4 14451.2
51–100 2453.2 546.7 540.7

101–500 686.2 241.2 233.6
501–1000 14.9 0.0 0.0

1001–5000 0.0 0.0 0.0
5001–10000 0.0 0.0 0.0

10000+ 0.0 0.0 0.0
Total 42094.0 141384.8 147224.6

TABLE III
NUMBER OF COMBINATIONS OF MULTIPLIER AND MULTIPLICAND (W/

FUNCTIONALLY-PREDEFINED KERNEL)

Number of appearances Quantization degree
fixed8 float16 float32

1–5 11958.5 22390.0 22659.7
6–10 5698.2 8117.4 8155.7

11–50 5017.7 3269.6 3225.7
51–100 71.1 11.4 11.0

101–500 91.9 89.7 89.7
501–1000 102.4 102.1 102.1

1001–5000 227.8 228.0 228.0
5001–10000 4.9 4.9 4.9

10000+ 0.3 0.3 0.3
Total 23172.8 34213.4 34477.1

that have the same combinations of a multiplier and a mul-
tiplicand even if values of feature maps are not quantized.
Therefore, computation reuse combined with Functionally-
Predefined Kernel will be able to achieve higher recognition
accuracy than computation reuse combined only with param-
eter quantization.

B. Experimental Setup

We investigated how many multiplications that have the
same combinations of a multiplier and a multiplicand are
included in the convolution operations conducted in the first
layer of the CNN shown in Fig. 6. The first convolutional
layer needs to perform 777,600 multiplications for a given
input image, assuming 32 nodes, three channels in each node,
30 × 30 convolution operations in each channel, and 3 × 3
multiplications performed in one convolution. As described in
Sec. III-A, parameter quantization is often used to reduce the
computation cost of CNNs. Therefore, we investigated the case
that all parameters except for Functionally-Predefined Kernels
are quantized with 16-bit floating point and 8-bit fixed point,
in addition to the case that the parameters are expressed by
32-bit floating point, which is the standard precision used in
Chainer.

C. Experimental Results

TABLES II and III show our analysis results. These tables
show the number of combinations of a multiplier and a mul-
tiplicand for each number of multiplications executed through



the convolution process. The right three columns represent the
combination count when varying precision of values. Fixed8,
float16, float32 represent 8-bit fixed point, 16-bit floating
point and 32-bit floating point, respectively. We summarize the
combination count averaged over ten input images randomly
selected from the CIFAR-10 dataset in the figure. For example,
TABLE II shows that 540.7 combinations of a multiplier and
a multiplicand are executed 51–100 times on average when
using float32 (see the 6th row in the rightmost column).

TABLE II shows that the multiplications that both have
the same combinations of a multiplier and a multiplicand and
are frequently executed are still limited, though using fixed8
increases the number of such multiplications. For example, the
number of combinations of a multiplier and a multiplicand that
are executed 500+ times is only 14.9 even in case of fixed8.
This means that we have a little chance to reuse results of
multiplications for our CNN when using computation reuse
combined with parameter quantization.

On the other hand, TABLE III shows that the CNN with
Functionally-Predefined Kernel includes much more multi-
plications that have the same combinations of a multiplier
and a multiplicand. Since some combinations appear several
thousand to ten thousand times, we can expect that compu-
tation reuse combined with Functionally-Predefined Kernel
works more effectively. For example, in case that neither
Functionally-Predefined Kernel nor parameter quantization are
used, the number of multiplications can be reduced to about
19% (= 147224/777600) by computation reuse because there
are approximately 147,224 unique patterns of multiplications.
When applying Functionally-Predefined Kernel to the CNN,
this number can be reduced to about 4.4%. Furthermore, we
can reduce the number of unique multiplications to about 3.0%
when using both Functionally-Predefined Kernel and fixed8.
These results show that the CNN with Functionally-Predefined
Kernel has many chances of computation reuse even without
parameter quantization. It is possible that computation reuse
combined with Functionally-Predefined Kernel can drastically
reduce the inference cost of CNNs while avoiding the degra-
dation of the recognition accuracy.

VI. CONCLUSIONS

In this paper, we proposed Functionally-Predefined Kernel
to reduce the training cost of CNNs and discussed the ef-
fectiveness of combining Functionally-Predefined Kernel with
computation reuse for improvement in inference performance.
Our experimental results show that Functionally-Predefined
Kernel can significantly reduce the number of learnable param-
eters in CNNs without hurting the recognition accuracy. Fur-
thermore, we observed that many combinations of a multiplier
and a multiplicand are repeatedly executed in the inference
process and that computation reuse has a high affinity for CNN
with Functionally-Predefined Kernel.

Our future work focuses on the design of more versa-
tile Functionally-Predefined Kernels. Additionally, we will
develop and evaluate an architecture of computation reuse
combined with Functionally-Predefined Kernel.
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