
Isolation-Safe Speculative Access Control
for Hardware Transactional Memory

Tomoki TAJIMI*, Masaki HAYASHI*, Yuki FUTAMASE*,
Ryota SHIOYA†, Masahiro GOSHIMA‡ and Tomoaki TSUMURA*

*Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†The University of Tokyo
7-3-1, Hongo, Bunkyo, Tokyo, Japan

Email: shioya@ci.i.u-tokyo.ac.jp

‡National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda, Tokyo, Japan

Email: goshima@nii.ac.jp

Abstract—On shared-memory systems such as multi-core pro-
cessors, lock-based mechanisms have been used in parallel
programs to exclude conflicting accesses on shared variables.
Transactional memory (TM) is a new paradigm to arbitrate
conflicting accesses and is expected to be an alternative to
the traditional lock-based mechanisms. Transactional memory
speculatively executes transactions in parallel and cancels the
execution when access conflicts are detected between them.
Because canceling the speculative execution has an impact on
TM performance, it is advisable to reduce conflicts. We found
that some of the accesses, that are judged as conflicting accesses
by TM, need not be denied and can be granted. In this paper,
we propose a novel execution control for TMs for speculatively
granting a certain type of access requests. The result of the
evaluation shows that the execution cycles can be reduced by
63.6% at a maximum and 38.8% on average.

I. INTRODUCTION

Transactional memory (TM)[1] is a promising mechanism
for improving both of productivity and performance of par-
allel processing programs on shared-memory systems such
as multi-core processors. It can be complementary and/or
alternative to traditional lock-based mechanisms that are awk-
ward and intractable for programmers. Hardware transactional
memories (HTMs), hardware implementations of TM, are
now widely installed to the several latest processors, such as
IBM zEC12, Power8, and Intel Haswell. Programmers define
critical sections as transactions, and the transactions can be
speculatively executed in parallel by HTMs, while traditional
lock-based systems completely serialize them.

HTMs dynamically detect access conflicts on shared vari-
ables between transactions and cancel speculative execution of
transactions. Because the canceled execution comes to nothing
and causes some performance overhead for rolling back the
transaction execution, how to avoid and reduce access conflicts
is very important for the performance of HTMs.

Many studies have been conducted on improving HTM
performance. Some[2], [3] of them are on partial rollback
that reduces the re-execution overhead of transactions, and
others[4], [5], [6] are on adaptive transaction control that fol-
lows application behavior. We also proposed some transaction
scheduling based on conflict predictions[7], [8], [9]. However,
some type of programs still suffer many access conflicts and
large performance overhead, and they should be relieved.

Transactions must guarantee several properties including
Atomicity and Isolation, and access requests that may violate
them are denied by HTMs. However, we found that some of
the requests can be granted without violating Isolation, and
this can improve the HTM performance. In this paper, we aim
to make the following contributions:

1) We carefully examine a typical benchmark program
and disclose that some access requests can be granted
without violating Isolation.

2) We propose a novel transaction control for speculatively
granting some access requests that may violate Isolation,
and canceling the accesses when the speculation fails.

3) We evaluate our proposal and show that the execution
cycles can be reduced by 63.6% at a maximum and
38.8% on average.

II. TRANSACTION CONTROL ON HTM

HTM guarantees the following two properties for trans-
actions by detecting memory accesses that violate them as
conflicting accesses.

Atomicity: Each transaction must be executed completely
and must not be executed partially.

Isolation: The result of the concurrent execution of trans-
actions must be the same as that of sequential
execution. Hence, values modified in a transac-
tion should not be visible to other transactions
before it is completely executed.

Figure 1 shows an example where how conflicting accesses
are detected and resolved on LogTM [10], a typical HTM
implementation. In this figure, thr.0 signifies a thread whose
ID is ‘0’ and Tx.X signifies a transaction whose ID is ‘X.’

Now, assume that Tx.X and Tx.Y have issued store A and
store B, respectively, and thr.0 sends an access request for
address B when Tx.X tries store B (at t1) in accordance
with the coherence protocol. In this example, thr.0 receives
NACK (at t3), because Tx.Y has already accessed on B and
Isolation may be violated if the access is permitted. Receiving
NACK, Tx.X stalls until the conflict is resolved. After then,
assume that Tx.Y tries to access A and receives NACK (at
t4). Since this situation where two transactions receive NACK

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 25th IEEE Int'l Conf. on Electronics Circuits and Systems (ICECS 2018)Copyright (C) 2018 IEEE

Fig. 1. Conflict detection and resolution on a typical HTM

from each other is a kind of deadlock, thr.1 aborts Tx.Y for
avoiding deadlock (at t4), cancels its issued store B, and
restores its state of before the beginning of Tx.Y (roll-back).

Because store B of Tx.Y is canceled, now store B of
Tx.X is not a conflicting access and Tx.X can come out of
stall and issue store B (at t5). In contrast, Tx.Y should
restart after waiting a certain period (called backoff) to prevent
from conflicting with Tx.X again (at t6). This is an outline
of transaction control on general HTMs. As you can see in
this example, conflicting access brings futile stalled cycles,
and a stalled transaction can cause another conflict that leads
to performance overhead resulting from abort, roll-back, and
backoff. Hence, it is desirable for HTM performance to reduce
conflicting accesses.

III. PERMITTING CONFLICTING ACCESSES

A. Conflicting Accesses that can be Permitted

With traditional HTM systems, an access request on a
shared variable is denied for Isolation if the variable has been
already accessed by another concurrent transaction. However,
if the transaction never accesses the variable again until its
commit, the request can be granted and the access can be
permitted without violating Isolation. We explain it with the
code shown in Fig. 2; this is a simplified code of Deque from
GEMS microbench suite[11].

The portion between BEGIN_TRANSACTION() and
COMMIT_TRANSACTION() is defined as a transaction. In
this transaction, after the variable count is incremented (line
2), an element is enqueued or dequeued on the right or left
end of the deque (double-ended queue). After a transaction
accessed count, all accesses on count by other transactions
are judged as conflicting accesses and denied for Isolation until
the transaction commits or aborts. However, in this case, the
transaction will never access count again before its commit,
and other transactions can access count without violating
Isolation because they can observe the same value with the
committed value of count before the commit.

1 BEGIN_TRANSACTION(0);
2 count++;
3
4 switch(op){
5 case 0: enqueue_right(); break;
6 case 1: dequeue_right(); break;
7 case 2: enqueue_left(); break;
8 case 3: dequeue_left(); break;
9 }

10 :
11 COMMIT_TRANSACTION(0);

Fig. 2. Simplified code of Deque

Fig. 3. How to permit a conflicting access

B. Speculative Control for Conflicting Accesses

As explained in Sec. III-A, if a transaction has completed
its modification on a shared variable, or after the last-touch on
the variable by the transaction, access requests on the variable
from other transactions can be granted without violating
Isolation. We propose some extensions for HTM to support
such novel access control between transactions.

To exploit this idea, the last-touch on each shared variable
in each transaction should be managed and maintained. We
installed a counter and a small dedicated table to each pro-
cessor core for this. When a transaction starts, the counter
is reset. After then, on each memory access (load/store), the
transaction increments the counter value and registers the tuple
of the transaction ID, the accessed address, and the counter
value on the dedicated table.

We explain the execution model with Fig. 3. After thr.0
starts Tx.X, it issues store A (at t1). Then, the counter is
incremented to 1, and the tuple {X,A,1} is registered to the
table. The transaction registers {X,B,2} when it issues store
B (at t2), and updates the registered {X,A,1} with {X,A,4} at
the second access to A (t3).

After Tx.X is committed once and the last-touch of each
accessed addresses are registered on the table, thr.0 can predict
whether Tx.X has completed its modification on each address.

As shown in the example of Fig. 3, assume that thr.0 receives
an access request on B through the next execution of Tx.X
(at t4). In this case, Tx.X has already issued three memory
accesses and thr.0 can tell that the last-touch on B is the second
memory access in Tx.X from the table. Hence, thr.0 knows that
it can grant the request without violating Isolation.

This is the concept of our novel transaction execution con-
trol for HTM. On HTM, execution of a transaction is naturally
speculative, and our proposal boosts its speculativeness by
speculatively permitting some conflicting accesses. We call
a transaction that speculatively grants a conflicting access
request permitter, and the sender of the request requester.

C. Control for Isolation when Speculation Fails

A requester is speculatively permitted its conflicting access
on the presupposition that the permitter has completed its
modification on the shared variable, will commit, and the
modified value of the shared variable will be persistent. If this
speculation fails, or the permitter accesses the variable again
or aborts, the execution of the requester must be canceled for
Isolation. We implement two coherence messages for it:

Req.Abort for requesting receiver to abort its transaction.
Committed for announcing that sender’s transaction has

committed.
When a permitter touches a shared variable after the pre-

dicted last-touch or the permitter aborts, it needs to send
Req.Abort to the requester. In contrast, the requester must
postpone its commit until the corresponding permitter commits
even if it instantly can, because the requester may receive
Req.Abort before the permitter’s commit. Hence, the permitter
ought to send Committed to the requester when committing,
and the requester can commit after receiving it.

Another control is required for roll-back. As explained,
when the permitter aborts, the corresponding requester also
should abort, and they should roll-back together. In that case,
the state that should be restored is one of before the beginning
of not requester but permitter. Hence, the requester should
roll-back first, and after then, the permitter should roll-back.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup

We used a full-system execution-driven functional simulator
Wind River Simics [12] in conjunction with customized mem-
ory simulators built on Wisconsin GEMS [11] for evaluation.
The detailed configuration of the simulated processor is shown
in TABLE I. The topology and the link latency of the inter-
connect network are defined as same as LogTM [10]. We used
Btree, Contention, and Deque from GEMS microbench suite,
Raytrace from SPLASH-2 benchmark suite [13], and Kmeans
from STAMP benchmark suite[14] as the workloads. We have
evaluated the execution cycles of them with 16 threads.

B. Evaluation Results

The evaluation results with the following two HTM con-
figurations are shown in Fig. 4. It shows the total sum of

TABLE I
SPECIFICATIONS OF THE SIMULATED PROCESSOR

Processor SPARC V9
#cores 32 cores
clock 4 GHz
issue width single
issue order in-order
non-memory IPC 1

L1 cache 32 KBytes
ways 4 ways
latency 3 cycles

L2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 4 GBytes
latency 450 cycles

Interconnect network latency 14 cycles

Fig. 4. The normalized total sum of execution cycles

execution cycles of all 16 threads and its breakdown. Each
bar is normalized to the result of baseline (B).

(B) LogTM (baseline)
(P) HTM with the proposed execution control; specula-

tively grants conflicting accesses that may not violate
Isolation.

When simulating multi-threaded execution on a full-system
simulator, performance variability must be considered [15].
Hence, we tried 10 times on each benchmark and measured
95% confidence interval, which is illustrated as an error bar.

The legend in Fig. 4 shows the breakdown items of the total
sum of cycles. They represent the waiting cycles for receiving
Committed message (Wait), the barrier synchronization cycles
(Barrier), the stalled cycles (Stall), the exponential backoff
cycles (Backoff), the aborting overheads (Aborting), the ex-
ecution cycles in the transactions that are aborted/committed
(Bad trans/Good trans), and the execution cycles out of trans-
actions (Non trans).

As a result of the evaluation, (P) reduces the execution
cycles 63.6% at a maximum, and 38.8% on average with
respect to (B). We go to the detailed examination of some
results in the following section.

1 int A[1];
2 int B[1024];
3
4 BEGIN_TRANSACTION(0);
5 for(i = 0; i < 10; i++){
6 if(access_type[i] == READ)
7 var = A[0];
8 else
9 A[0] = 0;

10 }
11 // A[0] is never accessed after here.
12 for(i = 10; i < 100; i++){
13 if(access_type[i] == READ)
14 var = B[index[i]];
15 else
16 B[index[i]] = 0;
17 }
18 COMMIT_TRANSACTION(0);

Fig. 5. Simplified code of Contention

1 BEGIN_TRANSACTION(0);
2 while(!node->isLeaf){
3 child = BtreeNode_findChild();
4 :
5 :
6 node = child;
7 }
8 :
9 COMMIT_TRANSACTION(0);

Fig. 6. Simplified code of Btree

C. Detailed Examination

Contention has a transaction that has a similar structure to
the transaction of Deque shown in Fig. 2. Figure 5 shows
a simplified code of the transaction in Contention. In this
transaction, A[0] is accessed in the former for loop, and
then, never accessed in the latter for loop. On general HTMs,
a transaction can not access A[0] if a concurrent transaction
is executing the latter for loop. In contrast, such an access can
be speculatively granted with our proposed execution control,
and this largely improves the performance of (P).

Btree’s performance is also drastically improved with our
proposal as shown in Fig. 4. Figure 6 shows a simplified code
of a transaction in Btree; the transaction is for searching leaf
nodes in a B-tree. In this transaction, nodes are traced from a
parent to a child until a leaf node is found by the while loop.
In this loop, each node is accessed in a certain iteration and
then never accessed again. The proposed execution control
mechanism counts memory accesses dynamically, and can
properly manage the last-touch on each node. This allows the
conflicting accesses on each node to be speculatively granted
and the performance of (P) should be improved

Raytrace has a transaction that costs much execution cy-
cles. In such a transaction, many cycles can be reduced by
speculatively granting conflicting accesses, and Fig. 4 shows
that the sum of execution cycles except Non trans is reduced
to nearly a fourth with (P).

The total performance of Kmeans is not much improved
because Non trans occupies large, but the sum of execution
cycles except Non trans is reduced to less than half with (P).

D. Additional Hardware Cost

This section discusses the hardware cost of the dedicated ta-
ble for managing last-touch. Each table entry has 3-bit, 26-bit,
and 13-bit width fields for storing the transaction ID, accessed

cache line address, and the counter value, respectively. In a
transaction of Btree, 15,018 cache lines are accessed, and the
table needs (3+26+13)bits×15,018 ≒ 77.1KBytes per thread
for managing them all. This is rather large and we should
examine the trade-off between the capacity and performance.

V. CONCLUSION

In this paper, we disclosed that some conflicting accesses
do not violate Isolation on hardware transactional memory,
and proposed an execution control for speculatively allowing
such accesses. We also designed a mechanism to guarantee
Isolation when the speculation fails. We implemented it on a
simulator and the evaluation results show that the execution
cycles can be reduced by 63.6% at a maximum. Evaluation
with a large variety of programs and finding the optimum table
configuration are left for our future work.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Numbers JP17H01711, JP17H01764, and JP17K19971.

REFERENCES

[1] M. Herlihy et al., “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” in Proc. 20th Int’l Symp. on Computer
Architecture (ISCA’93), May. 1993, pp. 289–300.

[2] M. J.Moravan et al., “Supporting Nested Transactional Memory in
LogTM,” in Proc. 12th Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Oct. 2006, pp.
1–12.

[3] A. McDonald et al., “Architectural Semantics for Practical Transactional
Memory,” in Proc. 33rd Annual Int’l Symp. on Computer Architecture
(ISCA’06), 2006, pp. 53–65.

[4] A. Shriraman et al., “Flexible Decoupled Transactional Memory Sup-
port,” in Proc. 35th Annual Int’l Symp. on Computer Architecture
(ISCA’08), 2008, pp. 139–150.

[5] S. Tomic et al., “Eazyhtm, Eager-lazy Hardware Transactional Memory,”
in Proc. 42nd Annual IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO-42), 2009, pp. 145–155.

[6] M. Lupon et al., “A Dynamically Adaptable Hardware Transactional
Memory,” in Proc. 43rd Annual IEEE/ACM Int’l Symp. on Microarchi-
tecture (MICRO-43), 2010, pp. 27–38.

[7] A. Hirota et al., “A Concurrency Control in Hardware Transactional
Memory Considering Execution Path Variation,” in Proc. 4th Int’l Symp.
on Computing and Networking (CANDAR’16), Nov. 2016, pp. 77–83.

[8] K. Mashita et al., “A Waiting Mechanism with Conflict Prediction on
Hardware Transactional Memory,” IEICE Trans. on Information and
Systems, vol. E99-D, no. 12, pp. 2860–2870, Dec. 2016.

[9] T. Tajimi et al., “Initial Study of a Phase-Aware Scheduling for Hardware
Transactional Memory,” in Proc. IEEE Pacific Rim Conf. on Communi-
cations, Computers and Signal Processing (PacRim 2017), 2017.

[10] K. E. Moore et al., “LogTM: Log-based Transactional Memory,” in
Proc. 12th Int’l Symp. on High-Performance Computer Architecture
(HPCA’06), Feb. 2006, pp. 254–265.

[11] M. M. K. Martin et al., “Multifacet’s General Execution-driven Mul-
tiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[12] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[13] S. C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in Proc. 22nd Int’l. Symp. on Computer
Architecture (ISCA’95), 1995, pp. 24–36.

[14] C. C. Minh et al., “STAMP: Stanford Transactional Applications for
Multi-Processing,” in Proc. IEEE Int’l Symp. on Workload Characteri-
zation (IISWC’08), Sep. 2008.

[15] A. R. Alameldeen et al., “Variability in Architectural Simulations
of Multi-Threaded Workloads,” in Proc. 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA’03), Feb. 2003, pp. 7–18.

