
Exclusive Control for Compound Operations
on Hardware Transactional Memory

Keisuke MASHITA∗, Anju HIROTA∗ and Tomoaki TSUMURA∗
∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Transactional memory (TM) is a lock-free synchro-
nization mechanism for shared memory systems, and it is a
promising paradigm for complementing or replacing conventional
lock-based techniques. On TM, read-after-read (RaR) accesses
cause no conflict and do not prevent parallel speculative execution
of transactions. However, quite a few of read accesses are followed
by write accesses to the same variables or addresses, for example
in compound operations such as increment or decrement. We
found that granting such RaR access requests causes futile stalls
which impact TM performance seriously. In this paper, we
propose a novel effective transaction scheduling for hardware
transactional memories by controlling such RaR accesses with
very small additional hardware costs. If an RaR access to an
address is expected to be followed by a write access to the same
address, the transactions concerned with the access are serialized.
The result of the experiment shows that the execution time of
HTM is reduced 72.2% at a maximum and 17.5% on average
with our transaction scheduling.

I. INTRODUCTION

As electric power consumption and calorific power are
increasing, and semiconductor devices keep downscaling, it
becomes difficult to raise clock frequencies of microproces-
sors. In response to this distress, multi-core processors now
attract a great deal of attention. On multi-core processors,
multiple threads run in parallel for speed-up.

For running multiple threads in parallel on shared memory
systems, mutual exclusion is required, and lock has been
commonly used. However, lock-based methods can cause
deadlocks, and this leads to poor scalability and high com-
plexity. To solve these problems, transactional memory [1]
has been proposed as a lock-free synchronization mechanism.

On HTM, hardware implementation of transactional mem-
ory, transactions are executed speculatively as long as there
is no conflict on shared variables, and read-after-read (RaR)
access requests are always granted because they do not bring
any conflict. However, a read access is often followed by
a write access to the same variable, or address. Hence a
conflict will be brought by the write access after all, and
some execution or stall cycles turn into completely futile. We
have raised this problem and proposed a primitive solution to
address this problem [2]. In this paper, we discuss this problem
more concretely, analyzing some programs, and propose a
new practical method and its light-weight implementation to
solve this problem. We propose a novel effective transaction

scheduling for HTMs by detecting such RaR accesses and
serializing the transactions that include such RaR accesses.

In this paper, we aim to make the following contributions:

1) We disclose that not a few read accesses are followed by
write accesses to the same shared variables, and explain
RaR requests on such read accesses can bring serious
futile stalls and aborts.

2) We propose a novel transaction scheduling for eager/ea-
ger HTMs to solve the problem. It is the first practical
solution which can be implemented with a very simple
mechanism, and we show that the additional hardware
cost for the implementation is reasonably small.

3) We evaluate the transaction scheduling, and show the
results that the execution cycles can be reduced 72.2%
at a maximum and 17.5% on average with the proposed
transaction scheduling.

II. RELATED WORK

So far, various scheduling techniques for HTM have been
proposed. To improve the performance of parallel executions,
Yoo et al. [3] proposed a method which brings the concept
of adaptive transaction scheduling (ATS) in TM. ATS can
improve the performance of workloads that lack for parallelism
because of frequent contentions by dynamically dispatching
transactions and controlling the total number of concurrent
transactions using runtime feedbacks.

Geoffrey et al. [4] proposed a method that focuses on
common memory location accessed in multiple transactions.
In the method, locality of memory access on each consecutive
execution is called similarity, and the similarity is calculated
with a Bloom filter. If the similarity exceeds a threshold value,
the transactions are serialized. Akpinar et al. [5] have proposed
some novel ideas for conflict resolution policies in HTMs such
as alternating priorities of transactions in various ways based
on the total number of stalled or aborted transactions.

To reduce energy consumption, Gaona et al. [6] proposed
a method that serializes transactions when a conflict arises.
Then, if a conflicted transaction has finished, the transaction
wakes up a transaction of the highest priority among all of the
stalled transactions.

In contrast to these methods, we focus on what type of
access pattern to shared variables will have a bad influence

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 2nd IEEE Nordic Circuits and Systems Conf. (NorCAS 2016)Copyright (C) 2016 IEEE

on HTM performance, and have proposed a scheduling for
controlling harmful read-after-read accesses.

Bobba et al. [7] took notice of access ordering on each
shared variable, and the solution is partially similar to our
proposal. They proposed Store Predictor, a mechanism for
managing addresses that are written after being read. When
reading an address which is managed by Store Predictor, each
thread sends a write request instead of a read request. Thereby,
a thread that has already accessed to the address detects an
ostensible write-after-read (WaR) or write-after-write (WaW)
conflict, and sends back a NACK. In this way, the bad
influence of RaR accesses can be partially lightened. However,
Store Predictor has two serious problems. One problem is that
the mechanism implementation for managing target addresses
is almost not discussed. Both the structure and access overhead
of a lookup table for the target addresses are not explained,
and the practicality is not clear. The other problem is that
Store Predictor does not consider execution path variation of
transactions. Hence, even once an address is written after being
read, any RaR access to the address is stalled even when they
will not bring conflicts. This may cause severe performance
degradation. We will compare the performance between Store
Predictor and our proposal in Section V.

III. EXCLUSIVE CONTROL FOR COMPOUND OPERATIONS

In this section, we argue a problem of HTM, and propose
a method for solving the problem.

A. Futile Stalls

A read access on a shared variable will be followed by
a write access on the same variable in many cases. For
example, the statements with increment/decrement, and com-
pound assignment operators can cause such situations. When
a transaction running in parallel with other transactions has
such a compound operation, even if a read access on a shared
variable is allowed by other transactions, the counterpart write
access will cause a conflict with other transactions afterwards.
This can degrade the performance of HTM severely.

Figure 1 shows an example where two threads Thr.1 and
Thr.2 execute the same transaction Tx.X in parallel. Assume
that Tx.X has a compound operation. After both the threads
execute load A, Thr.2 tries store A and a conflict is
detected. At this time, in transactional memories employing
eager conflict detection, such as LogTM [8], Thr.2 receives
NACK and stalls its Tx.X (t1). Afterwards, when Thr.1 tries
store A (t2), another conflict is detected because Thr.2 has
already accessed the address, and Thr.1 receives NACK. In
this case, because Tx.X being executed by the NACK sender
Thr.2 is elder than Tx.X by Thr.1, Thr.1 aborts its Tx.X (t3),
and Thr.2 can continue Tx.X. In this case, Thr.2 has stalled
a while, but Tx.X on Thr.1 was aborted and did not proceed
at all. In other words, the stall of Thr.2 becomes completely
futile. Such stall is called futile stall [7], and one of the major
reasons of the performance degradation.

When a transaction that reads a shared variable and af-
terwards writes to the same variable is executed by multiple

Fig. 1. Futile stall caused by a compound operation.

TABLE I
PERCENTAGE OF THE ABORTS CAUSED BY COMPOUND OPERATIONS.

GEMS microbench
Btree Contention Deque Prioque

39.6% 80.9% 92.9% 99.3%
SPLASH-2

Barnes Cholesky Radiosity Raytrace
52.2% 92.8% 97.6% 99.4%

threads in parallel, all the threads can read the shared variable
early in the transactions. It is because read-after-read (RaR)
accesses never cause conflicts, and are always allowed by
HTM. However, the following write accesses cause conflicts
after all. This is the major cause of futile stalls.

We simulated some programs from benchmark suites;
GEMS microbench [9] and SPLASH-2 [10], which are com-
monly used for evaluating transactional memory systems, and
examined how harmful to the performance of HTM such
RaR accesses are. The simulation environment is the same
as described in Section V later.

We investigated how much aborts are caused by write re-
quests after read accesses to the same variables. Table I shows
the percentage of such aborts in the total number of aborts,
when each benchmark program is executed in 16 threads. The
configuration of the processor is shown in Table III later.
As shown in the table, the percentages are large for all the
programs, and even over 90% for five programs out of eight.

Table II shows three representative addresses, where many
aborts are caused by compound operations, for each programs
from SPLASH-2 benchmark suite. It is found that even one
address can be implicated in the large number of aborts, when
the address is written after read in a transaction.

These results imply that, when a read access on a shared
variable will be followed by a write access to the same shared
variable, granting RaR requests to such a variable can cause
heavily repeated aborts. Repeated aborts will raise backoff
cycles, and significantly degrade the performance of HTM.
Therefore, such RaR accesses should be controlled.

TABLE II
THE RANKINGS FOR THE NUMBER OF ABORTS, WHICH ARE CAUSED BY

COMPOUND OPERATIONS, BY TARGET ADDRESS. (SPLASH-2)

program Tx. ID address #aborts
Barnes Tx.2 0xb4265ac0 361

Tx.2 0xb4265a80 134
Tx.3 0xd9af4e00 56
total #aborts 1,568

Cholesky Tx.17 0xd51d6240 99
Tx.16 0xd51d6240 66
Tx.16 0xd51d6280 45
total #aborts 348

Radiosity Tx.17 0xe6ddf140 13,628
Tx.0 0xe1534940 140
Tx.3 0xe1470900 109
total #aborts 14,454

Raytrace Tx.19 0xe144a300 45,257
Tx.16 0xe144a300 36,368
Tx.18 0xe144a300 11,296
total #aborts 93,556

Fig. 2. Exclusive control for a compound operation.

B. Exclusive Control Model

To address this problem, we propose a novel transaction
scheduling in this paper for controlling RaR accesses. Specif-
ically, an RaR access request will be answered with NACK,
if the access is expected to be followed by a write request to
the same address. This can achieve exclusive control for any
instruction region from a read access on a shared variable to
a write access on the same variable, and prevent futile stalls.

Figure 2 shows an execution model of our proposal. In
this example, three threads (Thr.1 to 3) are executing the
transaction Tx.X speculatively in parallel. Tx.X includes a
compound operation, namely a read access and a subsequent
write access to an address A.

First of all, Thr.2 reads from A, and then, Thr.1 and Thr.3
also try to read from A by sending read requests for A (t1, t2).
In traditional eager HTM models, these requests are granted
by the directory, and both Thr.1 and Thr.3 can read from A. In

Fig. 3. How to set C-bit.

contrast, in our HTM model, if the directory predicts that the
read access on A in Tx.X will be followed by a write access
on A, NACKs are sent back to Thr.1 and Thr.3. Receiving
NACKs (t3, t4), the read accesses are deferred, and both of
Thr.1 and Thr.3 are stalled

As a result, when Thr.2 tries to write on A, no conflict is
brought and Thr.2 can advance its execution of Tx.X without
any futile stall. After Thr.2 commits its Tx.X, the read request
from Thr.1 is granted (t5), and after Thr.1 commits its Tx.X,
Thr.3 can return from its stall (t7).

IV. IMPLEMENTATION

In this section, we explain the implementation of the trans-
action scheduling proposed in Section III, and its detailed
execution model. We adopt LogTM [8] as the base model for
simplicity in this paper, but our model can be implemented on
any eager/eager HTM in a similar way.

A. Additional Hardware

In LogTM, each cache line in the L1 cache has R-bit and W-
bit field for detecting conflicts. Besides these two bit fields,
we use additional 1-bit field called C-bit. The value of C-
bit in a cache line represents whether the line has been read
and afterwards written from the same thread. When a thread
writes on a cache line that the thread has read in the current
transaction and whose R-bit is set, the thread sets the C-bit of
the cache line. Receiving a read request, a thread tests C-bit
and R-bit of the requested cache line, and decides whether it
should send NACK or ACK.

Now, we discuss the additional hardware cost for C-bits.
C-bit is the 1-bit field for each cache line. Assume that the
number of cores is 32, L1 cache is 32 kB, cache line size is 64
Bytes, and the number of ways is 4. In this case, the additional
hardware cost for C-bits is 32× 1024/(4× 64) = 128 bits for
one core, and only 512 Bytes for whole a 32-core processor.

Fig. 4. Testing C-bits.

B. Execution Model
1) How to set C-bits: First, we explain how to set C-bit by

using an example shown in Fig. 3, where three threads Thr.1
to 3 are executing the same transaction Tx.X.

After three threads execute load A, Thr.1 tries store A
(t1). This write access is write-after-read (WaR) and causes
a conflict. Hence, Thr.2 and Thr.3 send NACKs to Thr.1, and
Thr.1 stalls its Tx.X (t2). After that, each of Thr.2 and Thr.3
tries store A, detects a WaR conflict, and aborts its own
Tx.X. When aborting its own Tx.X, each of Thr.2 and Thr.3
tests R-bit of the cache line including A. If R-bit is set, the
thread finds that the thread itself has read the cache line before
writing on the same cache line, and set C-bit of the line (t3
and t4).

2) How to test C-bits: As explained in IV-B1, C-bits are set.
Next, we explain how to use the value of C-bits for controlling
harmful RaR accesses.

Figure 4 shows an example, where three threads Thr.1∼3 are
executing the same transaction Tx.X, and C-bit for the address
A on each cache has already been set. First, Thr.2 executes
load A, and after that, each of Thr.1 and Thr.3 tries load A
and sends a read request for A to Thr.2. Receiving this request,
Thr.2 tests C-bit and R-bit of the cache line of A. When both
bits are set, or CA ∧ RA = 1, Thr.2 predicts that, even if it
grants the read request now, the request sender will send a
new write request soon, and a conflict will be brought after
all. Therefore, Thr.2 replies to the read request with NACK.
Receiving NACK, each of Thr.1 and Thr.3 stalls its Tx.X (t1
and t2), and Thr.2 can commit Tx.X without conflicts and stalls.
After Thr.2 commits Tx.X, in this example, Thr.1 receives ACK
(t3), and Thr.3 keeps stalling (t4).

3) How to clear C-bits: In this section, we describe how
and when C-bits are cleared. As described in the Section
IV-B2, each C-bit represents whether its corresponding cache
line is read first and written afterwards, and tested for deciding

whether the transactional operations to the cache line should
be serialized or not. However, an address, which is read
and afterwards written in a transaction, may only be read
in another transaction. Furthermore, such an address may
only be read and not written even in the same transaction,
when the execution path in the transaction varies because
of branch instructions. Consequently, a transaction can only
read a certain cache line whose C-bit is set, and this leads to
performance degradation because of unnecessary serialization.

Hence, it is very important to clear C-bits appropriately
and periodically. On the proposed HTM model, when a thread
commits a transaction, the thread tests the W-bit of a cache
line whose C-bit is set. If the W-bit is not set, the thread
can find that the cache line has been only read in this
transaction execution, and clear the C-bit for future transaction
control. Clearing C-bits as mentioned can prevent unnecessary
serialization and resulting performance degradation.

V. PERFORMANCE EVALUATION

A. Simulation Environments

We used a full-system execution-driven functional simula-
tor Wind River Simics [11] in conjunction with customized
memory models built on Wisconsin GEMS [9] for evaluation.
Simics provides a SPARC-V9 architecture and boots Solaris
10. GEMS provides a detailed timing model for the memory
subsystem. Illinois-based directory protocol maintains cache
coherence over a high-bandwidth switched interconnect. The
detailed configuration of the simulated processor is shown
in Table III. We have evaluated the execution cycles of 10
workloads from GEMS microbench, SPLASH-2 benchmark
suite [10], and STAMP benchmark suite [12].

B. Evaluation Results

Figure 5 shows the evaluation results with three mod-
els: (B) LogTM the baseline, (S) Store Predictor, and (P)

TABLE III
CONFIGURATION OF THE SIMULATED PROCESSOR.

Processor SPARC V9, 32 cores, 4 GHz,
single issue, in-order, non-memory IPC = 1

L1 cache 32 KBytes, 4 ways, latency = 3 cycles
L2 cache 8 MBytes, 8 ways, latency = 34 cycles
Memory 4 GBytes, latency = 500 cycles
Interconnect hierarchical switch topology, link latency = 14 cycles

Fig. 5. Execution cycles ratio (16 threads).

the proposal. Each bar is normalized to that of the base-
line LogTM (B). The legend shows the breakdown items
of total cycles. They represent the executed cycles out of
transactions (Non trans), the executed cycles in committed/
aborted transactions (Good trans/Bad trans), aborting over-
head (Aborting), stall cycles (Stall), barrier synchronization
cycles (Barrier), and exponential backoff cycles (Backoff).

For the simulation of multi-threading on a full-system sim-
ulator, the variability of performance [13] must be considered.
Therefore, we measured 95% confidence interval of 10 times
trials for each benchmark program, which are illustrated as
error bars in this figure.

As described in Section II, Store Predictor (S) should
manage addresses which are written after being read. To
estimate the ideal performance of Store Predictor, we assume
that the mechanism can register all the addresses written after
being read with no overhead, although its implementation is
not discussed originally in [7].

As shown in Fig. 5, the performance is remarkably im-
proved with our transaction scheduling (P) in the most of
the benchmark programs. This result implicates that each
of many programs has a transaction which includes a read
access followed by a write access, and is liable to bring
futile stalls frequently. In contrast, the performance of Btree
is significantly deteriorated with Store Predictor (S), although
the other results with (S) are similar to (P).

The proposed scheduling reduces the execution cycles
72.2% at a maximum and 17.5% on average, by effectively
solving these futile stalls. We go to detail examination of these

1 BEGIN TRANSACTION(I);
2 Btree insert (∗node, insert, key, ∗ptr) {
3 if (node−>isLeaf) {
4 node−>key num++;
5 node−>child[node−>key num] = node−>child[node−>key num−1];
6 for (i = node−>key num; i >= insert+1; −−i) {
7 if (i != NODE NUM PAIRS)
8 node−>key[i] = node−>key[i − 1];
9 node−>child[i] = node child[i − 1];

10 }
11 if (insert < NODE NUM PAIRS)
12 node−>key[insert] = key;
13 node child[insert] = ptr;
14 }
15 }
16 COMMIT TRANSACTION(I);

Fig. 6. The transaction for insertion (Tx.I) in Btree.

1 BEGIN TRANSACTION(L);
2 Btree lookup (∗node, key) {
3 if (node−>isLeaf) {
4 for (i = 0; i < node−>key num; ++i) {
5 if (key <= node−>key[i])
6 index = i;
7 }
8 } else {
9 for (i = 0; i < node−>key num; ++i) {

10 if (key > node−>key[i])
11 index = i;
12 }
13 }
14 node = node−>child[index];
15 }
16 COMMIT TRANSACTION(L);

Fig. 7. The transaction for lookup (Tx.L) in Btree.

results in the next section.

C. Detailed Examination

1) GEMS microbench: The execution cycles of all the pro-
grams from GEMS microbench are reduced with the proposed
scheduling (P). Especially, Backoff is drastically reduced in
Deque and Prioque. We examined these two programs, and
confirmed that each of them has a transaction with a compound
operation for a shared variable, and each of many read accesses
is followed by a write access to the same address. The
proposed scheduling prevents the futile stalls proceeding from
such transactions, and Backoff is reduced.

The performance of Btree is slightly improved with (P).
Btree has two noted transactions. The one is for inserting data
to a tree data structure (Tx.I shown as Fig. 6), and the other
is for looking up the tree (Tx.L shown as Fig. 7). Tx.I has
a read access to the shared variable node->key_num, and
it is followed by a write access to the variable (at line 4 in
Fig. 6). On the other hand, Tx.L also has read accesses to
the same variable (at line 4 and 9 in Fig. 7), but no write
access follows the read accesses. In this case, the proposed
scheduling works well for Tx.I by serializing it, and this can
be implicated from the reduction of Backoff in Btree. On the
other hand, if the execution of Tx.L is also serialized, the total
performance will degrade. The proposed scheduling effectively

1 BEGIN TRANSACTION(18);
2 if (gm.lookup array[key] != NOPE) {
3 /∗ some processing on each element in the queue ∗/
4 gm.array[index].element += 1;
5 /∗ some processing on each element in the queue ∗/
6 if (gm.lookup array[tmp l] != index) {
7 gm.lookup array[tmp l] = index;
8 }
9 }

10 COMMIT TRANSACTION(18);

Fig. 8. A transaction in Prioque.

1 BEGIN TRANSACTION(16);
2 ray−>id = gm−>rid++;
3 COMMIT TRANSACTION(16);

Fig. 9. A transaction in Raytrace.

prevents this performance degradation by clearing C-bits as
described in Section IV-B3. In contrast, Store Predictor (S)
severely suffers from this problem. Stalling Tx.L causes many
deadlocks and aborts, and its performance is degraded over
11x because Stall and Backoff are remarkably increased.

In the result of Prioque, Stall with (S) costs more cycles
than (P). The reason is that Prioque has a transaction in which
access pattern to a shared variable varies because of branch
instructions. Figure 8 shows the transaction. In this transaction,
the variable gm.array[].element is incremented at line
4. Proposal (P) and Store Predictor (S) can deal with this
compound operation on gm.array[].element, and im-
prove performance. Now, the array gm.lookup_array[]
is read and written at line 2, 6 and 7, when the conditional
expression at line 6 is true. However, when it is false,
gm.lookup_array is only read and not overwritten. As
with node->key_num in Btree, all the read accesses to
gm.lookup_array are stalled with (S) even when it is not
overwritten, and this makes Stall longer than (P).

2) SPLASH-2: The execution cycles of most of all the
programs from SPLASH-2 benchmark suite are reduced with
(P). Especially for Radiosity and Raytrace, Backoff is dras-
tically reduced. Figure 9 shows a transaction that includes a
compound operation in Raytrace.

In this transaction shown in Fig. 9, the variable gm->rid
is incremented, and the increment is a compound operation.
This increment must be atomically executed to generate unique
IDs, and traditional HTMs cause many futile stalls as shown
in Fig. 1 when this transaction is executed by multiple threads
in parallel. As a result, Backoff increases because most of
the conflicted transactions are aborted after futile stalls. The
transaction shown in Fig. 9 is serialized by the proposed
scheduling, and Backoff is drastically reduced.

3) STAMP: The performance of Kmeans is improved with
the proposed scheduling (P). Kmeans has a transaction in
which a shared variable is read and written, and serializing the
transaction works well with our proposal. On the other hand,
the performance of Vacation is not improved. This is because

there is no transaction that includes a read access to a shared
variable followed by a write access to the same variable.

VI. CONCLUSION

In this paper, we show that not a few read accesses to shared
variables are followed by write accesses to the same variables,
and granting read-after-read requests on such variables will
cause conflict before long and result in futile stalls and
repeated aborts.

To address this problem, we proposed a novel transaction
scheduling for hardware transactional memories, and show a
practical implementation of the scheduling on LogTM .

We have evaluated our proposal by comparing it with
LogTM and Store Predictor, through experiments under
GEMS microbench, SPLASH-2, and STAMP benchmark
suites. The evaluation results show that the proposed schedul-
ing can reduce futile stalls and resulting aborts, and improve
the performance 72.2% at a maximum and 17.5% on average.

ACKNOWLEDGMENT

This research was partially supported by the grant from
Tatematsu Foundation.

REFERENCES

[1] M. Herlihy et al., “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” in Proc. 20th Int’l Symp. on Computer
Architecture (ISCA’93), May. 1993, pp. 289–300.

[2] K. Hashimoto, S. Horiba, M. Eto, T. Tsumura, and H. Matsuo, “A Speed-
up Technique for Hardware Transactional Memory by Controlling Read-
after-Read Accesses,” IPSJ Trans. on Advanced Computing Systems,
vol. 6, no. 3(ACS44), pp. 58–71, Oct. 2013, (in Japanese).

[3] R. M. Yoo and H.-H. S. Lee, “Adaptive Transaction Scheduling for
Transactional Memory Systems,” in Proc. 20th Annual Symp. on Paral-
lelism in Algorithms and Architectures (SPAA’08), Jun. 2008, pp. 169–
178.

[4] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom Filter Guided
Transaction Scheduling,” in Proc. 17th Int’l Conf. on High-Performance
Computer Architecture (HPCA-17), 2011, pp. 75–86.

[5] E. Akpinar, S. Tomić, A. Cristal, O. Unsal, and M. Valero, “A Compre-
hensive Study of Conflict Resolution Policies in Hardware Transactional
Memory,” in Proc. 6th ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT’11), 2011.

[6] E. Gaona, R. Titos, M. E. Acacio, and J. Fernández, “Dynamic Se-
rialization Improving Energy Consumption in Eager-Eager Hardware
Transactional Memory Systems,” in Proc. Parallel, Distributed and
Network-Based Processing 2012 20th Euromicro International Confer-
ence (PDP’12), 2012, pp. 221–228.

[7] J. Bobba et al., “Performance Pathologies in Hardware Transactional
Memory,” in Proc. 34th Annual Int’l Symp. on Computer Architecture
(ISCA’07), 2007, pp. 81–91.

[8] K. E. Moore et al., “LogTM: Log-based Transactional Memory,” in
Proc. 12th Int’l Symp. on High-Performance Computer Architecture
(HPCA’06), Feb. 2006, pp. 254–265.

[9] M. M. K. Martin et al., “Multifacet’s General Execution-driven Mul-
tiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[10] S. C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in Proc. 22nd Int’l. Symp. on Computer
Architecture (ISCA’95), 1995, pp. 24–36.

[11] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[12] C. C. Minh et al., “STAMP: Stanford Transactional Applications for
Multi-Processing,” in Proc. IEEE Int’l Symp. on Workload Characteri-
zation (IISWC’08), Sep. 2008.

[13] A. R. Alameldeen et al., “Variability in Architectural Simulations
of Multi-Threaded Workloads,” in Proc. 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA’03), Feb. 2003, pp. 7–18.

