
Evaluation of Task Mapping
on Multicore Neural Network Accelerators

Satoshi SHINDO∗, Momoka OHBA†, Tomoaki TSUMURA∗, and Shinobu MIWA†
∗Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp
†The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan

Abstract—Deep neural networks are widely used for many
applications such as image classification, speech recognition and
natural language processing because of their high recognition
rate. Since general-purpose processors such as CPUs and GPUs
are not energy efficient for such neural networks, application-
specific hardware accelerators for neural networks (a.k.a. neural
network accelerators or NNAs) have been proposed to improve
the energy efficiency. There are many studies to increase the
energy efficiency of NNAs, but few studies focus on task allocation
on the accelerators. This paper provides the first exploration of
task mapping to cores within NNAs for the increased perfor-
mance. Intuitively, a well-tuned task mapping has less amount of
communication between cores. To confirm this assumption, we
tested two types of task mappings that generate different amount
of communication between cores on an NNA. Our experimental
results show that the number of communication between cores
strongly affects the execution cycle of the NNA and the most
effective task mapping differs depending on the size of neural
networks.

I. INTRODUCTION

Artificial neural networks are widely used for machine
learning applications such as image classification, speech
recognition and natural language processing. Recent machine
learning applications use neural networks having many layers,
Deep Neural Networks (DNNs), to achieve the high recogni-
tion rate. For example, a DNN composed of twenty layers
showed the highest recognition rate in the image classification
competition of ILSVRC-2014 (ImageNet Large Scale Visual
Recognition Challenge) [1]. Machine learning for DNNs is
called Deep Learning, and DNNs are growing deep and wide
to improve the recognition rate. However, computing DNNs
on general-purpose processors (e.g., CPUs and GPUs) is time-
consuming and energy inefficient [2], [3].

For the increased performance and energy efficiency, hard-
ware accelerators for neural networks (a.k.a. neural network
accelerators or NNAs) have been proposed [4], [5], [6], [7],
[8], [9]. NNAs are highly customized to compute neural net-
works and therefore show the significant improvement in the
performance and energy when compared to general-purpose
processors. For example, a state-of-the-art NNA achieves both
3x speedup and 100x energy efficiency when compared to
a GPU [8]. Although many studies to increase the energy
efficiency of NNAs have been conducted, few studies focus
on tuning computational tasks on the accelerators.

This paper provides the first exploration of task mapping to
cores within NNAs for the increased performance. Intuitively,
a well-tuned task mapping has less amount of communication
between cores. To confirm this assumption, we tested two
types of task mappings with different communication patterns
on an NNA and found that the number of communication
between cores proportionally impacted on the execution cycle
of the accelerator.

II. RESEARCH BACKGROUND

In this section, we overview artificial neural networks and
existing NNAs.

A. Neural Networks

Artificial neural networks are information processing
models inspired by biological nervous systems. They are com-
prised of many computational units (neurons) and connections
between them (synapses). The most general neural network is
composed of multiple layers with each having some neurons,
and neuron within a layer is connected to some neurons within
the next layer.

Figure 1 illustrates an example of multi-layer neural net-
works. This multi-layer neural network has three layers: input,
hidden, and output layers. In the multi-layer neural network,
signals received at the input layer propagate toward the output
layer through the synapses. A layer in which each neuron is
connected from all neurons in the previous layer is called a
fully-connected layer. Each synapse i has its own value called
weight wi (i = 1, ..., n). A neuron’s output y is defined as
follows;

y = f

(
n∑

i=1

wixi + b

)
(1)

where xi (i = 1, ..., n) represents input signals for the neuron
and b is a constant value called bias. The function f is called
an activation function. ReLU [10] which is often used as an
activation function in DNNs is defined as follows;

f(x) = max(0, x) (2)

We define the computation for one neuron (i.e., the com-
putation of y) as a task. More specifically, a task consists
of a multiply-add operation with input signals and synaptic
weights, and the computation for the activation function.

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 4th Int'l Symp. on Computing and Networking (CANDAR'16)Copyright (C) 2016 IEEE



Fig. 1. A multi-layer neural network.

Computing output signals of neurons from their input sig-
nals is called inference, and adjusting synaptic weights to
correct the output signals is called training.

B. Related Work

Various NNAs have been proposed, and they can be clas-
sified into two types. The first type of accelerators has many
processing elements that are specialized to compute output
signals of neurons. Each neuron in a neural network is mapped
to its own processing element. For example, Merolla et al. [11]
have proposed an accelerator having 256 processing elements,
which can simulate a neural network composed of up to 256
neurons. Similarly, Temam et al. [12] have proposed an accel-
erator composed of many processing elements, which connect
each other through some buffers to keep synaptic weights.
In these accelerators, a processing element starts to compute
the output signal of the corresponding neuron as soon as the
input signals have arrived, and then sends the computed output
signal to the neighboring processing elements. Because these
operations are simple, the above accelerators need not have
any control logic or instruction set. Besides, these accelerators
enable a processing element to fast load the corresponding
synaptic weights because they are stored in the buffers close
to the processing element. Although these accelerators provide
high-speed inference for some neural networks, they have no
capability to simulate neural networks where the number of
neurons exceeds the number of processing elements.

The second type of accelerators has a small number of
processing elements or cores with each computing outputs of
multiple neurons, and therefore has the capability to simulate
various scales of neural networks. For example, Chen et al. [5]
have proposed DianNao, which is a single-core NNA that
executes programs composed of dedicated instructions. Each
instruction computes outputs of multiple neurons in parallel.
DianNao can simulate various scales of neural networks de-
pending on a program running on the core. Chen et al. have
also proposed DaDianNao [4], a multicore accelerator which
is an enhanced model of DianNao. DaDianNao can simulate
a larger scale of neural networks than DianNao because
of the increased memories for keeping input/output signals
and synaptic weights. Similar to general-purpose multicore
processors, the performance of DaDianNao is expected to
depend on how to map computational tasks to cores, but it
has not been discussed in the paper [4].

Fig. 2. A multicore neural network accelerator.

III. MULTICORE NEURAL NETWORK ACCELERATORS

In this section, we describe multicore NNAs including
DaDianNao in detail.

A. Architecture

Figure 2 illustrates the architecture of a multicore NNA
including DaDianNao. The accelerator consists of a Shared
Memory and multiple cores. The Shared Memory stores input
and output signals of neurons. All cores can read and write
data on the Shared Memory through the on-chip network (not
shown in Fig. 2).

A core consists of a controller, an NFU (Neural Functional
Unit), and three buffers: an Input Buffer, a Weight Buffer, and
an Output Buffer. The Input and Output Buffers store input and
output signals of neurons, respectively, and the Weight Buffer
stores synaptic weights. The NFU is a processing unit for
tasks, which consists of multiply-add and activation function
logic. The controller manages three buffers and the NFU,
depending on a dedicated instruction which is read from a
per-core instruction memory (not shown in Fig. 2).

The Input and Output Buffers retain a part of the input and
output signals on the Shared Memory, respectively. An input
signal read from the Shared Memory is temporarily stored
in the Input Buffer. An output signal computed on the NFU
is temporarily stored in the Output Buffer and then written
back to the Shared Memory. The NFU can reuse the input
and output signals on two buffers for another task, and two
buffers thus help to reduce the pressure of the Shared Memory.

The Shared Memory and three buffers deal with a bunch
of data as a group, which is called a chunk. A core can
simultaneously read or write the data within a chunk on the
Shared Memory, and the NFU can execute the tasks for the
data in parallel. In this paper, we define the number of input
signals simultaneously readable from the Shared Memory as
Ni, and the number of output signals simultaneously writable
to the Shared Memory as No.

Here, we explain how to deal with input and output signals
and synaptic weights in the multicore NNA. Figure 3 shows an
example of data format used in the accelerator. This example
shows an input vector including 8 input signals (I1...I8), a
12 × 8 weight matrix (wij : 1 ≤ i ≤ 12, 1 ≤ j ≤ 8), and
an output vector including 12 output signals (O1...O12). The
output vector is given by the matrix multiplication of the input
vector and the weight matrix. For example, the input signals
I1...I8 are multiplied by the weight vector wij (j = 1, ..., 8),



Fig. 3. Data format in the multicore neural network accelerator.

and this results in the output signal Oi. The input and output
vectors, and weight matrix are partitioned into multiple chunks
in the accelerator. If Ni = No = 4, four input and output
signals, and 4× 4 synaptic weights, which are surrounded by
the red lines in the figure, are grouped, respectively.

The Input and Output Buffers have the limited number of
entries (e.g., 16 entries) with each holding one chunk. As
mentioned earlier, the core can reuse a chunk on the Input and
Output Buffer for another task. It means that the core does not
need to read a chunk from the Shared Memory if it resides
in either Input or Output Buffer. A buffer has to discard an
existing chunk when the number of incoming chunks exceeds
the number of entries. If the core requires the chunk discarded
from the Input Buffer, it has to be re-read from the Shared
Memory.

B. Operations

This section describes how cores execute tasks in the
multicore NNA. Figure 4 illustrates an example where the
accelerator computes the tasks shown in Fig. 3. As mentioned
earlier, we assume Ni = No = 4, so that four input and output
signals are grouped in the Shared Memory. For example, the
eight input signals I1...I8 are partitioned into two chunks
(I1...I4 and I5...I8) on the Shared Memory. The figure shows
the case where the core computes the four output signals
O1...O4 in parallel. Since the eight input signals are partitioned
into two chunks, the core needs to read these chunks from
the Shared Memory sequentially. Also, the NFU conducts the
multiply-add operation for the above chunks sequentially. The
top figure (i) illustrates the computation for the first input
chunk, while the bottom figure (ii) illustrates the computation
for the second input chunk.

The core first reads the input signals I1...I4 from the Shared
Memory and then stores them in the Input Buffer. Next, the
NFU reads the input signals from the Input Buffer. At the
same time, the NFU reads the corresponding weight matrix
(wij : 1 ≤ i ≤ 4, 1 ≤ j ≤ 4) from the Weight Buffer. After
that, the NFU conducts the matrix multiply-add operation with
the input signals and the corresponding weight matrix (a), and
it results in the partial sums which are labeled as S′

1...S
′
4.

(i) Computation for the first input chunk.

(ii) Computation for the second input chunk.

Fig. 4. Computation of one output chunk with two input chunks.

Next, the core reads the next input signals I5...I8 from the
Shared Memory and then sends them to the NFU via the Input
Buffer. The NFU conducts the matrix multiply-add operation
with the partial input signals and the corresponding weight
matrix (b), and then adds the result to the partial sums S′

1...S
′
4

to get the final sums (c). Next, the NFU applies the activation
functions to the computational results (d), and this results in
the output signals O1...O4. Finally, the core stores the output
signals to the Shared Memory via the Output Buffer. The other
output chunks (i.e., O5...O8 and O9...O12) can be computed
in the similar manner.

The tasks within a layer can be computed in parallel because
there are only read-after-read memory dependencies between
them. The outputs of the tasks are used as the inputs for
the tasks within the next layer. Therefore, all cores store the
outputs of the tasks in the Shared Memory. A core reads these
outputs from the Shared Memory when it executes the tasks
for the next layer.

Figure 5 illustrates an example of communication between
cores with the Shared Memory. Figure 5 (i) represents the case
where two cores execute the tasks for the N -th layer, while
(ii) represents the case where both cores execute the tasks for
the (N + 1)-th layer. First, when computing the tasks for the
N -th layer, each core writes the computational result into the
Shared Memory (i). Next, each core reads the result from the
Shared Memory before computing the tasks for the (N +1)-th
layer (ii). This enables cores to share outputs of tasks in the
multicore NNA.

IV. TASK MAPPING FOR MULTICORE NNAS

In this section, we describe two task mapping methods in
multicore NNAs.

A. Overview
As explained in Section III, data transfer from a core to

another core via the Shared Memory is needed if the latter



(i) Execution of tasks for the N th layer.

(ii) Execution of tasks for the (N + 1)-th layer.

Fig. 5. Inter-core communication via the Shared Memory

core requires the results computed by the former core. This
data transfer can be regarded as inter-core communication.
Since the number of inter-core communications can affect the
performance of a multicore NNA, this paper investigates its
impact on the performance by using two task mappings with
different communication patterns. The first task mapping is to
group output signals of neurons in a layer and assign all tasks
within a group to a core. The second task mapping is to group
input signals of neurons in a layer and assign all computations
with a group to a core. We explain these two mappings in the
following two subsections.

B. Task Mapping Based on Output Signals

First, we explain task mapping based on output signals of
neurons. In this task mapping, many tasks are mapped into one
core. Some cores may need to read the same input signals to
compute the assigned tasks, but all tasks assigned to a core
require no additional calculation or communication.

Figure 6 shows an example of task mapping based on output
signals of neurons. The figure represents the case where two
cores compute eight output signals of neurons (O1...O8) with
each receiving twenty-four input signals (I1...I24). We assume
No = Ni = 4 in this example, so that the input signals
I1...I24 are partitioned into six chunks and stored in the Shared
Memory. Additionally, the eight output signals are divided
into two groups (i.e., O1...O4 and O5...O8), and the tasks
for O1...O4 and O5...O8 are allocated to Core0 and Core1,
respectively.

The tasks are computed as follows. First, both cores read
the same input chunk of I1...I4 from the Shared Memory, and
then compute the partial results for the assigned output signals
in parallel. Next, both read the next input chunk of I5...I8 and
then compute the new partial sums. Then, the newly-computed
partial sums are added to the first partial sums in each core.
Two cores repeat such operations for the remaining four input
chunks of I9...I24, and this results in the matrix multiply-
add with all input signals and corresponding synaptic weights.

(i) Computation for the first four input chunks.

(ii) Computation for the remaining two input chunks.

Fig. 6. Task mapping based on output signals.

Finally, each core computes the own output signals (O1...O4

or O5...O8) with the result and activation function, and then
writes the output signals into the Shared Memory.

In summary, this task mapping needs each core to read all
input signals from the Shared Memory, but not to write any
partial sums into the Shared Memory.

This task mapping has one problem that it is difficult for
a core to reuse the input chunks in the Input Buffer. This
is because the core sequentially reads all input chunks in
the Shared Memory. The example shown in Fig. 6 assumes
that each Input Buffer has four entries, so that all entries of
the buffer are filled up after the first four input chunks are
transferred from the Shared Memory (i). When a core tries
to read the fifth and the sixth input chunks from the Shared
Memory (ii), the Input Buffer has no empty entry so that two
input chunks (e.g., the first and second input chunks) in the
buffer have to be discarded. Thus, if the number of the input
chunks of a neuron is bigger than the number of entries of the
Input Buffer, a core is difficult to reuse the input chunks in
the Input Buffer under this task mapping.

C. Task Mapping Based on Input Signals

Second, we explain task mapping based on input signals of
neurons. This mapping needs cores to compute tasks in two
steps. In the first step, the input signals in the Shared Memory
are divided into some groups, and a core then computes
partial results of multiply-add with one of the groups. The



(i) First step: computation of partial results with assigned input signals.

(ii) Second step: integration of partial results.

Fig. 7. Task mapping based on input signals.

core temporarily stores the result in the Shared Memory. In
the second step, cores compute output signals with the stored
partial sums and activate function.

Figure 7 shows an example of task mapping based on input
signals. Note that the tasks and cores used in the figure are
the same as those used in Fig. 6.

In the first step, the six input chunks on the Shared Memory
are divided into two groups and each group is then assigned
to a core (i). In this example, the first group (i.e., I1...I12) is
assigned to Core0, while the second group (i.e., I13...I24) is
assigned to Core1. Each core sequentially reads the assigned
input chunks and then computes all partilal results of multiply-
add with reading the input chunks. For example, Core0 com-
putes the partial results of multiply-add, which are labeled as
S′

1...S
′
8, with the input signals I1...I12 and the weight matrix.

Similar to this, Core1 computes the partial results of multiply-
add, which are labeled as S′′

1 ...S′′
8 , with the input signals

I13...I24. These partial results are temporarily stored in the
Shared Memory.

Note that each core can reuse the input chunks on the Input
Buffer with this task mapping. This is because the Input Buffer
composed of four entries can retain all three input chunks in
a group. For example, Core0 need not read the input signals
I1...I12 from the Shared Memory to compute S′

5...S
′
8 because

these input signals are already stored in the Input Buffer at
the computation of S′

1...S
′
4.

In the second step, both cores compute output signals with

these partial results in parallel (ii). In this example, Core0
computes the output signals O1...O4, while Core1 computes
the output signals O5...O8. Each core reads the corresponding
partial results from the Shared Memory, and then sum them
up. After that, the core computes the assigned output signals
with the result and activate function, and then writes the output
signals into the Shared Memory.

In summary, this task mapping enables cores to reduce the
number of input-chunk reads from the Shared Memory to the
number of input chunks, at the cost of some reads and writes
for the partial results. It can be achieved if the number of input
chunks in a group is smaller than the number of entries in the
Input Buffer.

V. EVALUATION

In this section, we show the experimental result of two task
mappings on a multicore NNA, and discuss their impact on
the performance.

A. Experimental Setup

The two task mapping methods described in Section IV
are evaluated with our in-house cycle-level simulator, which
carefully models multicore NNAs including DaDianNao. We
confirmed that our simulator had a good ability to reproduce
the results presented in the paper [4], and this experimental
result is shown in the paper [13].

The detailed configuration of the simulated accelerator is
shown in TABLE I. The number of cores is 16. The parameters
including Ni, No, and the number of entries of Input and
Output Buffers are modeled on DaDianNao [4].

We evaluated execution cycles to process one fully con-
nected layer in multi-layer neural networks. In order to in-
vestigate the impact of layer size, we used three layers: FC1
(512 neurons, 512 input signals), FC2 (1280, 1280), and FC3
(2560, 2560).

Since our accelerator has 16 cores, task mapping based
on output signals divides the neurons in each layer into 16
groups, with each being assigned to a core. Similar to this,
task mapping based on input signals divides the input signals
in each layer into 16 groups, with each being assigned to a
core. Therefore, tasks assigned to cores are balanced regardless
of the task mapping methods.

To investigate the impact of data reuse in Input Buffers,
we measured execution cycles in two cases where the data
reuse function is validated and invalidated, respectively. All
input signals are stored in the Shared Memory before the
simulation starts. It means that our experiment ignores the
time to generate input signals.

B. Evaluation Result

We tested the following five configurations for FC1...FC3.
(B) all tasks assigned to a single core (baseline)
(T1) task mapping based on output signals when inval-

idating the data reuse in Input Buffers (run on 16
cores)



TABLE I
CONFIGURATION OF THE ACCELERATOR

Chip
Number of cores 16 cores
Clock frequency 606 MHz
NFU latency 1 cycle
On-chip network latency 1 cycle
On-chip network bandwidth 100 GB/s
Ni 16 neurons
No 16 neurons

Core
Input Buffer 16 entries
Output Buffer 16 entries

Shared Memory
Latency 10 cycles
Number of ports 16 ports

TABLE II
THE NUMBER OF PER-CORE SHARED MEMORY ACCESSES

FC1 FC2 FC3
Read Write Read Write Read Write

(B) 1056 32 6480 80 25760 160
(T1) 66 2 405 5 1610 10
(TR1) 66 2 405 5 1610 10
(T2) 98 34 485 85 1770 170
(TR2) 36 34 90 85 180 170

(TR1) task mapping based on output signals when validat-
ing the data reuse in Input Buffers (run on 16 cores)

(T2) task mapping based on input signals when invalidat-
ing the data reuse in Input Buffers (run on 16 cores)

(TR2) task mapping based on input signals when validating
the data reuse in Input Buffers (run on 16 cores)

Figure 8 shows the number of execution cycles, while
TABLE II summarizes the number of per-core Shared Memory
accesses. Note that all cores have the same number of Shared
Memory accesses because tasks are equally allocated to cores.

The figure shows two important aspects for task mapping on
the multicore NNA. First, the 16-core execution (T1), (TR1),
(T2), and (TR2) drastically improves the performance of the
accelerator for all layers when compared to the single-core
execution (B). Therefore, task mapping is very important to
maximize the performance of the multicore NNA. Second, the
configuration (TR1) is faster than the configurations (T2) and
(TR2) for FC1, while the latter configurations are faster than
the former configuration for FC2 and FC3. This means that the
most effective task mapping differs depending on the number
of neurons and inputs.

C. Discussion

First, we focus on (T1) and (TR1). Figure 8 indicates that
(T1) and (T2) shows the same number of the execution cycles
for all layers. In addition, the number of per-core Shared
Memory accesses in (T1) is also equal to that in (TR1). This
is because (TR1) has no chance to reuse the data in Input
Buffers. The layer FC1, which has the smallest number of
inputs among three layers, has 512/Ni = 32 input chunks,
so that the number of the input chunks exceeds the number
of entries of an Input Buffer. As a result, no input chunks in

Fig. 8. Execution cycles.

Input Buffers can be reused in (TR1). All input chunks have
to be read from the Shared Memory.

Next, we focus on (T2) and (TR2). Our experimental result
shows that both execution cycles and numbers of per-core
Shared Memory reads in (TR2) are smaller than those in
(T2). This is because each Input Buffer can keep the assigned
input chunks during the computation of partial results. For
example, FC3, which has the largest inputs among three
layers, has 2560/Ni = 160 input chunks. These input chunks
are partitioned into 16 groups under task mapping based on
input signals, so that each core computes partial results with
160/Ni = 10 input chunks. Each Input Buffer can retain the
10 input chunks because the number of the input chunks is
smaller than the number of entries of the buffer. Thus, each
input chunk needs to be read only once from the Shared
Memory in (TR2).

Furthermore, we discuss our experimental results per layer.
Figure 8 presents that the execution cycles in (TR2) is larger
than that in (TR1) for FC1. This is because cores spend lots
of time for the second step of task mapping based on input
signals (i.e., integration of partial results). For example, the
number of writes to the Shared Memory in (TR1) is only 2,
while that in (TR2) is 34. This implies that the increase in
writes to the Shared Memory cancels out the reduction in the
execution cycles caused by the data reuse in (TR2).

In contrast, the execution cycles in (TR2) are smaller than
those in (TR1) for FC2 and FC3. This is because task mapping
based on input signals enables cores to reuse a number of
data in Input Buffers. For example, for FC2, the numbers of
writes to the Shared Memory in (TR1) and (TR2) are 5 and
85, respectively, while the numbers of reads from the Shared
Memory in (TR1) and (TR2) are 405 and 90, respectively.
Since the total number of Shared Memory accesses in (TR2)
is much smaller than that in (TR1), (TR2) shows the higher
performance than (TR1).

To clarify the relationship between numbers of Shared
Memory accesses and execution cycles, we drew Fig. 9 with
the results shown in Fig. 8 and TABLE II. This is the main
result of this paper. We can see that the number of execution



Fig. 9. Relationship between numbers of per-core shared memory accesses
and execution cycles.

cycles of the multicore NNA is proportional to the number of
per-core Shared Memory accesses. Note that the configuration
(B) has the different gradient. This is because the throughput
of Shared Memory accesses is restricted by the throughput of
the single core in (B), while it is restricted by the throughput of
the Shared Memory or the on-chip network in the other config-
urations. We can learn an important lesson from this graph: the
reduction in the number of inter-core communications is quite
effective for the improved performance of multicore NNAs.

VI. FUTURE WORK

We list the future work of our task mapping study. Although
we assumed that only the data in Input Buffers were able to
be reused in this evaluation, we need to examine the impact
of the data reuse in Output Buffers on the performance of
multicore NNAs. For example, a core has an opportunity to
reuse the data in the Output Buffer when it starts to compute
neurons in the next layer, because some neurons in the next
layer receives some output signals computed by the core. In
addition, a core can reuse the partial results of multiply-add
on the Output Buffer when it starts the second step of task
mapping based on input signals, because some partial results
are needed to compute the final outputs on the core. The data
reuse in Output Buffers helps to reduce the number of Shared
Memory accesses and the execution cycles of a multicore
NNA.

This paper mentions task mapping for a single layer, but task
mapping for multiple layers should be also considered. Many
DNNs have convolution layers in which neurons are partially
connected from some neurons in the previous layer [14].
Additionally, many studies of pruning synapses to accelerate
the computation of neural networks have been conducted [15],
[16]. Since a core needs the limited number of output signals
to compute the neurons in the next layer for these neural
networks, the Output Buffer may have a chance to keep
all output signals required to compute the next layer. This
means that the core does not need to read input signals from
the Shared Memory at the computation of the next layer.
Therefore, task mapping considering the connections between
layers will be more effective for partially-connected layers
than fully-connected layers.

VII. CONCLUSION

This paper provides the first exploration of task mapping
on multicore NNAs to improve the performance. Intuitively, a
well-tuned task mapping has less amount of communication
between cores. To confirm this assumption, we tested two
types of task mappings that generate different amount of
communication between cores on an NNA. Our experimental
results show that the number of communication between cores
strongly affects the execution cycles of the NNA and the most
effective task mapping differs depending on the size of neural
networks.

Our task mapping methods assume that only the data in
Input Buffers are reusable, but the data in Output Buffers are
also reusable on multicore NNAs. Data reuse in Output Buffers
will lead to the further reduction in the number of inter-core
communications, so one of our future work is to test task
mapping methods considering data reuse in Output Buffers.

REFERENCES

[1] C. Szegedy et al., “Going Deeper with Convolutions,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
1–9.

[2] R. Preissl et al., “Compass: A Scalable Simulator for an Architecture
for Cognitive Computing,” in Proc. Int’l Conf. on High Performance
Computing, Networking, Storage and Analysis (SC’12), no. 54, 2012.

[3] Q. V. Le et al., “Building High-level Features Using Large Scale
Unsupervised Learning,” in Proc. 29th Int’l Conf. on Machine Learning
(ICML-12), 2012, pp. 81–88.

[4] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,”
in Proc. 47th Annual IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO-47), 2014, pp. 609–622.

[5] T. Chen et al., “DianNao: a small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. 19th Int’l Conf. on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’14), 2014, pp. 269–284.

[6] J. Albericio et al., “Cnvlutin: Ineffectual-Neuron-Free Deep Convolu-
tional Neural Network Computing,” in Proc. 43rd Annual Int’l Symp.
on Computer Architecture (ISCA’16), 2016, pp. 1–13.

[7] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in Proc.
43rd Annual Int’l Symp. on Computer Architecture (ISCA’16), 2016, pp.
367–379.

[8] S. Liu et al., “Cambricon: An Instruction Set Architecture for Neural
Networks,” in Proc. 43rd Annual Int’l Symp. on Computer Architecture
(ISCA’16), 2016, pp. 393–405.

[9] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, pp.
668–673, Aug. 2014.

[10] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. 27th Int’l Conf. on Machine Learning
(ICML-10), 2010, pp. 807–814.

[11] P. Merolla et al., “A digital neurosynaptic core using embedded crossbar
memory with 45pJ per spike in 45nm,” in Proc. Custom Integrated
Circuits Conf. (CICC), 2011.

[12] O. Temam, “A defect-tolerant accelerator for emerging high-performance
applications,” in Proc. 39th Annual Int’l Symp. on Computer Architecture
(ISCA’12), 2012, pp. 356–367.

[13] M. Ohba, S. Miwa, S. Shindo, T. Tsumura, H. Yamaki, and H. Honda,
“Initial study of reconfigurable neural network accelerators,” in Proc. 7th
Int’l Workshop on Advances in Networking and Computing (WANC’16),
Nov. 2016.

[14] Y. LeCun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov. 1998.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and
Connections for Efficient Neural Network,” in Advances in Neural
Information Processing Systems 28 (NIPS 2015), 2015, pp. 1135–1143.

[16] A. Polyak and L. Wolf, “Channel-Level Acceleration of Deep Face
Representations,” IEEE Access, vol. 3, pp. 2163–2175, 2015.




