
Hardware Supported Marking
for Common Garbage Collections

Shinji KAWAMURA∗ and Tomoaki TSUMURA∗
∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Many mobile systems have to achieve both high
performance and low memory usage, and the total performance
of such the systems can be largely affected by the effectiveness
of GC. Hence, the recent popularization of mobile devices makes
the GC performance play one of the important roles on the
wide range of platforms. The response performance degradation
which is caused by suspending all processes for GC has been a
well known potential problem. Therefore, GC algorithms have
been actively studied and improved, but they still have not
reached any fundamental solution. In this paper, we focus on
the point that the same objects are redundantly marked during
the GC procedure that is implemented on DalvikVM, one of the
famous runtime environments for the mobile devices. Then we
propose a hardware support technique for improving marking
routine of GC. We installed a set of tables to a processor
for managing marked objects, and by referring these tables,
redundant marking for marked objects can be omitted. The result
of the simulation experiment shows that the execution cycles of
GC are reduced by 20.7% at a maximum, and 10.2% on average.

I. INTRODUCTION

Many mobile systems have to achieve both high perfor-
mance and low memory usage, and the total performance
of the wide range of platforms now can be affected by the
effectiveness of Garbage Collection (GC). It has been well
known that GC has a big effect on the total performance
of the systems such as server-side Java runtime environment.
In addition, the response performance degradation which is
caused by suspending all processes for GC has been a well
known potential problem. To address this problem, algorithmic
solutions have been mainly explored in many studies for GC.
However, most of the studies are for reducing the frequency
of collections by using a complicated tuning for the systems
and the applications, or for reducing the response time of the
system at the cost of the throughput. Thus, the problem of GC
has not reached any basic resolutions.

For this reason, we have focused on the basic routines
that many GC algorithms commonly have, and we aim to
improve the performance of GC by supporting the routines
with hardware. First of all, we investigated the operation of
GC which is implemented on DalvikVM; it is famous as a
runtime environment on the mobile devices. As a result, we
found that it takes much time to mark objects one after another
with tracing references between the objects. In addition, we
also found that many objects are marked redundantly. In this

paper, we propose a hardware support technique to omit such
redundant marking for marked objects. In our proposal, for
managing marked objects, we install dedicated tables to the
processor. By referring these tables, redundant marking for
marked objects can be omitted. Thereby, the tracing routine
which consumes much time in GC can be improved, and high
performance GC can be achieved.

In this paper, we aim to make the following contributions:
1) We found that GC includes redundant marking, that is,

some objects are marked several times per collection.
2) We propose a hardware supported marking for common

GCs. In our proposal, we install dedicated tables to a
processor. By using these tables, redundant marking can
be omitted.

3) We evaluate the proposed method. The results show
that the execution cycles can be reduced by 20.7% at
a maximum, and 10.2% on average.

II. BACKGROUND

In this section, we explain GC, the representative GC
algorithms, and related work.

A. Garbage Collection

GC is a routine for automatic memory management. It
automatically frees a part of heap area occupied by unused
objects. Figure 1 shows a state of the heap area and references
between objects. A pointer to an object located in the heap area
is stored into a global variable or an area such as call stack
or registers, which are directly accessible from applications.
These areas are called the set of roots, and by tracing pointers
from here, all the objects in the heap area can be referred. The
objects which are located in the heap area may have pointers
to some other objects. Those objects which are referred by
another object can be reached from the set of roots, and are
called live objects. On the other hand, the unused objects
which can not be reached from the set of roots are called dead
objects. Because GC frees a part of the heap area occupied by
dead objects, the memory area where the objects have been
located can be reused.

Mark & Sweep [1] is one of the representative GC algo-
rithms. This algorithm consists of two phases. The first phase
is called Mark phase when all live objects are marked, and

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 4th Int'l Symp. on Computing and Networking (CANDAR'16)Copyright (C) 2016 IEEE



Fig. 1. Heap Area and References during program execution.

the second phase is called Sweep phase when dead objects
are collected. These two phases are executed repeatedly.

Copying [2] and Reference Counting [3] are also the
representatives of GC algorithms. In addition, although many
other GC algorithms have been studied, all of them are just
combinations or improvements of those three algorithms [4].
Especially, Mark & Sweep is widely used as a base of many
algorithms because it is comparatively easy to be implemented.

B. Related Work

Concurrent GC [5] is a representative algorithm of GC. This
algorithm aims to shorten suspension period of the system by
running in parallel with other applications. However, while
GC is being executed in parallel with other applications, some
objects can not be marked properly because some pointer
modifications may be caused by the applications. Thereby,
Concurrent GC makes it possible to prevent this issue and
run in parallel with other applications, by using the barrier
synchronization and starting mark routine again from those
pointers. The barrier synchronization is used for detecting the
modifications of pointers. Whereas, this algorithm decreases
the throughput because of the overhead which is caused by
synchronization between GC and other applications.

Although most of the improvements of GC focus on the
software as mentioned above, a few studies have proposed
hardware support techniques, for example, SILENT [6] and
Network Attached Processing (NAP) [7]. These techniques use
the algorithms which let GC run in parallel with other applica-
tions as well as Concurrent GC, and achieve high performance
with hardware supports for barrier synchronization.

III. BOTTLENECK ANALYSIS OF GC

In this paper, we cancel the performance bottleneck of the
representative GC algorithms with a hardware support, and
then we aim to achieve significantly high performance GC.

A. The Major Routine in GC

We analyzed a representative GC algorithm for investi-
gating the bottleneck of GC. In this analysis, the target is
Mark & Sweep implemented in DalvikVM. First of all, we
estimated the breakdown of the execution time which GC
spent. We used gem5 simulator system [8], and executed

TABLE I
THE AVERAGE NUMBER OF MARKING FOR THE SAME OBJECTS.

X 1 10 50 100 200
AOBench 345 151 37 20 11
GCBench 61,717 6,312 1,269 636 319
crypto.aes 2,804 854 218 115 61

crypto.signverify 2,801 1,412 349 180 94
compress 627 321 84 45 25

serial 4,269 1,156 313 165 87

DalvikVM on this simulator to measure the execution cycles
of each routine of GC. We measured the execution cycles
of GCBench [9], AOBench [10], and four benchmarks in
SPECjvm2008 suite [11]. As a result, we found that Mark
phase occupies about 80% of the whole GC cycles at a
maximum, and about 46% of them on average.

Based on this result, we investigate the reason why Mark
phase occupies much execution time of GC, and we aim to
improve many GC algorithms by supporting this phase with
additional hardware.

B. Object Tracing in DalvikVM

In order to search for the live objects in the heap area, the
references which belong to marked objects need to be recur-
sively traced. Mark Stack, which manages marked objects, is
used in DalvikVM in order to trace references recursively.

After objects are marked, they are pushed into Mark Stack in
sequence. When an object is popped from this stack, all objects
which are referred by this object are searched for, and they
are marked and pushed into the stack. Repeating this routine
until Mark Stack becomes empty makes all live objects in the
heap area be marked.

However, a simple implementation such that all of marked
objects are pushed into Mark Stack can not manage circular
references among objects. Therefore, Mark Bitmap, which is a
bit string for managing whether each object in the heap area is
marked or not, is inspected when the object is marked. Then,
if the bit corresponding to the object has been already set, it
is inhibited from being pushed into Mark Stack.

Whereas, the determination that the object should be pushed
or should not be pushed into Mark Stack is made just before
the object is pushed. Thereby, duplicated calculation of the bit
position corresponding to a previously traced object can not be
omitted, while it is essentially unnecessary, and the calculation
is the major part of making routine of GC.

We estimated the frequency of such redundant calculation,
or redundant marking, in the same environment mentioned
in Section III-A. Therefore, we measured how many times
each object had been marked when GC which ran in each
benchmark program is completed. We calculated how many
times each object is marked, and we summarized the result
of the average number of the high-ranking objects in TABLE
I. In this figure, X means the number of objects which are
used for calculating the average. For example, the column of
X = 10 shows the average of marks for the top 10 objects.

According to the result, some of the benchmark programs
include the objects which are marked more than 1000 times.



This should be one of the causes of the low performance
of marking routine in the result which is shown in Section
III-A. Additionally, crypto.signverify is proved to include more
objects which are frequently and redundantly marked because
the value of X = 10 is not so smaller than the value of X = 1
compared with the other benchmark programs. Thereby, high
performance of GC will be achieved by omitting the redundant
marking.

IV. REDUCING REDUNDANT MARKING WITH ADDITIONAL
HARDWARE

In this section, we propose a speed-up technique for omit-
ting redundant marking mentioned in Section III, and then we
explain its overview and running model.

A. Overview of Proposal

In order to reduce the overhead of GC, which is mentioned
in the previous section, we propose a hardware support tech-
nique to omit redundant marking. In this section, we introduce
the abstract and execution model of our proposal.

In order to omit the redundant marking while GC is running,
a new mechanism which makes it possible to judge whether
the target object to be marked has already been marked or not
is required. For this reason we modify the hardware of the
processor, and install a dedicated table in which the marked
objects are managed. Additionally, we extend the existing
marking phase, and make the objects be marked after the
dedicated table is checked. Thus, when the objects which
are being marked have been registered with the table, in
other words, when the objects have been already marked, the
marking calculation for those objects can be omitted. On the
other hand, if the target object to be marked has not been
registered with the table, the object is registered with the table
for omitting future redundant marking for the object.

Here, we show how to omit redundant marking by using
the dedicated table in Fig. 2. This figure shows an example
where four objects, A to D, in the heap area are marked in
sequence. At first, when the object A is marked for the first
time (i), it is marked as usual because it has not been registered
with the table. At the same time, the address of the heap area
which is allocated to the object A is registered with the table
in order to omit the future redundant marking for object A
(a). As these actions are repeated for all objects to be traced,
the objects, A to D, are eventually registered with the table.
Therefore, redundant marking for object C is, for example,
omitted because it has been already registered with the table
when the reference from D to C is traced (ii).

B. How to Manage Entries

As mentioned in Section IV-A, marked objects are managed
in the dedicated table to improve the object tracing which
can incur a significant overhead in existing DalvikVM. To
eliminate all the redundant marking, a dedicated table which
can manage all marked objects is required. However, the
number of objects which should be managed is different in
each program. Therefore, preparing a well huge table for

Fig. 2. Omitting a marking by using a dedicated table.

managing all objects in most programs will seriously increase
area cost and power consumption, and it will become a
concern.

As one of ways to solve this problem, registered objects in
the dedicated table should be managed in a list structure with
an LRU based eviction algorithm. Thereby, the objects which
are frequently marked can be managed preferentially with a
little hardware cost.

However, if the list employs a simple LRU that a target
object to be marked is inserted into the head of the list in
any case, the objects which are frequently marked and should
be managed may not be preferentially preserved in the list.
For example, in case when many objects which are marked
only once are continuously registered with the list after an
object which would be marked redundantly was registered with
the list, the information about the object may be evicted even
though it should be managed.

In our proposal, objects are therefore managed in two ded-
icated tables which employ an LRU-based eviction algorithm.
The algorithm manages objects depending on whether they
have been marked redundantly or not. In this paper, we define
each of these dedicated tables as Primary Table and Secondary
Table. Before an object is being marked, these dedicated tables
are searched in order of Primary Table, Secondary Table, and
whether the marking for the object can be omitted or not is
decided. Secondary Table is used for managing newly marked
objects, and Primary Table is used for managing only objects
which have been marked twice or more. Thereby, objects
which are marked redundantly, that is, objects for which
redundant marking can cause a big overhead are preferentially
managed in Primary Table.

Now, we explain how to manage objects with the two
dedicated tables by using an example shown in Fig. 3. This
example shows how to manage objects, A to D, which are
being traced in sequence. The number of entries in each table
is assumed to be three. At first, when the object A is marked
for the first time, its address is registered with Secondary
Table. Repeating this action for the object B and C, three



Fig. 3. Managing entries by using two tables.

objects, A to C, will be registered in course of time as shown in
(ii). If the object B which has been registered with Secondary
Table is traced again (iii), it is removed from Secondary Table
and is registered with Primary Table (a). Only redundantly
marked objects are managed in Primary Table due to such
actions. If the object D is marked in this situation (iv), it is
registered with Secondary Table, and each entry of Secondary
Table comes to have an object. If another object becomes a
new target to be marked in this situation, the oldest object,
that is, the object A is evicted from Secondary Table.

V. IMPLEMENTATION AND BEHAVIOR MODEL

In this section, we describe the implementation of the
method to omit redundant marking mentioned in Section IV.

A. Composition of the Dedicated Tables

In this section, we introduce the concrete structure of each
dedicated table which is for managing marked objects.

1) Primary Table: In our proposal, objects are managed
with two tables which employ the LRU-based algorithm men-
tioned in Section IV-B. Thereby, when the entries of the table
overflows, the oldest object is appropriately evicted from the
tables. Because frequently marked objects are managed with
Primary Table, the redundant marking for the objects should
be omitted. In order to achieve this, it needs to be confirmed
whether the target object is marked or not with as small latency
as possible. Therefore, Primary Table is implemented with a
CAM (Content Addressable Memory) which is capable of fast
associative search.

Primary Table consists of three fields. One is defined as
‘Address,’ and holds an address in the heap area which is
assigned to a marked object. Another is defined as ‘prev,’
and keeps the index of the previous object in the LRU list.
The other is defined as ‘next,’ and keeps the index of the
next object. Each of prev and next holds the table index
corresponding to an object in Primary Table. In order to insert
an entry to the head of the LRU list and in order to evict
an entry from the tail of the list, two types of registers are

also installed. These two are defined as ‘Head’ and ‘Tail,’ and
respectively hold the indices of the head and the tail of the list
which are managed in Primary Table. In order to manage the
number of the registered objects, one register is also installed,
and this is defined as ‘#Addr.’

2) Secondary Table: Secondary Table is referred when a
target object to be marked has not been registered in Primary
Table. Then, if the object has been registered with Secondary
Table, the information about it is moved to Primary Table.
After Primary Table is searched for a target object to be
marked, the operation for Secondary Table is done for the
object which has not been registered with Primary Table.
The latency of the operation itself barely affects the total
performance of GC, and the latency can be concealed because
this operation is done concurrently with a marking routine
for the object. Therefore, Secondary Table is implemented
with a RAM because it causes lower area overhead and lower
power consumption than a CAM while it is not capable of fast
associative search like a CAM. However, if Secondary Table
is naively implemented with a RAM, all entries in the table
need to be accessed sequentially, and the search cost for the
table becomes significantly large. In our proposal, we therefore
employ a set-associative strategy as the structure of Secondary
Table, and search cost can be decreased by using hash.

Before an object is registered with Secondary Table, hash is
calculated from the address of the object in order to decide a
set where the object should be registered. When the number of
registered objects in a set becomes larger than the number of
ways along with registration of a new object, any one of entries
is overwritten by a new entry. Owing to this, a field ‘Victim
Index’ for managing the entry which should be overwritten
next is provided in every set. This field is implemented with
a ring counter which can count to the maximum value of the
way number. When an object is registered, the entry which
the value of Victim Index indicates is overwritten.

When Secondary Table is searched by using the address of
the object as a key, hash is calculated from the address in
order to identify a set. To confirm whether the target object to
be searched for has been registered with Secondary Table or
not, the address of the object is compared with all addresses
stored in the entries of the set. The number of comparison is
the same as the number of ways at most, and so the comparison
overhead can be significantly smaller than the overhead in case
when all the entries are accessed sequentially.

B. Operations for the Dedicated Tables

In this section, we explain the operations for the dedicated
tables which are mentioned above. Firstly, we explain the
required operations in the case when a target object to be
marked has been registered with Primary Table. Secondly, we
explain the required operations in the case when the object
has not been registered with Primary Table.

1) When the Object has been Registered in Primary Table:
When a target object to be marked has been registered with
Primary Table, that is, when the object has been marked
several times, marking this object is omitted. Then, the entry



Fig. 4. Operations in case when the object has been registered with Primary
Table.

corresponding to the object is inserted into the head of the list
in accordance with LRU.

Now, we concretely explain operations for Primary Table
by using Fig. 4. This figure shows operations in case when
the object B which has been already registered with Primary
Table is attempting to be marked again. In this case, the objects
A and C, which are located just before and after B in the list
respectively, are identified in order to move B to the head of
the list after the marking routine for B has been omitted (a).
After A and C are identified, B is moved to the head of the
list (b). Along with this, prev and next of objects which are
located just before and after B in the list, and registers are
updated (c). In this example, because B is moved to the head
of the list, the contents of Primary Table are updated to make
A and C adjoining. In addition, the value of register Head
which represents the head of the list, the value of prev and
next which B has are updated.

2) When the Object has not been Registered with Primary
Table: When a target object to be marked has not been
registered with Primary Table, it is marked as usual. At the
same time, hash is calculated from the address of the object,
and Secondary Table is searched by using this hash. In case
when the object has been registered with Secondary Table, it
is registered with Primary Table in order to omit the future
redundant marking for the object. Here, the operations for
each dedicated table in this case are shown in Fig. 5. This
figure shows the case when D which has been registered with
Secondary Table is marked again. Firstly, hash is calculated
from the address of D, and the set which can contain the
address is selected. By comparing the address with ones in the
set, the entry which has D is identified (a). Secondly, in order
to move D to Primary Table, D is removed from Secondary
Table. Along with the deletion of D, the entry which had D
becomes empty, and so Victim Index of the set corresponding
to the entry is updated to indicate the way number of the entry
(b). After that, D is registered with Primary Table (c). Along
with the registration, the prev and next of D and the prev of

Fig. 5. Operations in case when the object has registered with Secondary
Table.

TABLE II
EVALUATION ENVIRONMENT.

Platform ARM-RealView PBX
Processor ARMv7

Clock 2.0 GHz
Memory 256 MB

OS Linux 2.6.38.8-gem5

A, which was the head of the list, are updated. In addition,
each value of the registers is also updated.

When an object is registered with Primary Table in case
when the table is full, one entry will be reserved by evicting
the tail object of the list which is managed by Primary Table.
The object which is evicted from Primary Table is registered
with Secondary Table. Therefore, when the object is marked
again, it will be registered with Primary Table immediately.

On the other hand, in case when the target object to
be marked has been registered with neither Primary Table
nor Secondary Table, the object should be registered with
Secondary Table. In order to do it, the set corresponding to the
address of the object is identified. Then, the value of Victim
Index of the set is acquired. Thus, the object is registered with
the way indicated by the value. Then the value of Victim Index
is increased.

VI. PERFORMANCE EVALUATION

We have evaluated the performance of the hardware support
mechanism for GC, with a simulator. In this section, we
discuss its effectiveness, and show the estimation of the
hardware cost for implementing the mechanism.

A. Simulation Environment

In this evaluation, we used gem5 simulator system [8]. The
evaluation environment is shown in TABLE II. Workloads
are GCBench [9], AOBench [10], and four benchmarks in
SPECjvm2008 suite [11]. Gem5 simulator is a full system
simulator, so some other programs run in parallel with the
benchmark program. In addition, the behavior of those pro-
grams is different every time, and the amount of resources



Fig. 6. Ratio of execution cycles of GC.

which are available for the benchmark are also different
every time. Thereby, we have to consider the variation of the
performance. Thus, we executed each workload several times,
and adopt the best result among them in each benchmark
program as the result with least disturbance by the other
running programs.

Now, we describe the number of the entries which are
used in each dedicated table. Because the marking routine for
the objects which have been registered with Primary Table
is omitted, higher performance can be achieved by using
larger sized Primary Table. However, according to the result
which is shown in TABLE I in Section III-B, redundant
marking are mainly caused by top dozens of objects which
have been marked so many times. In addition, the energy
consumption of CAM which Primary Table is implemented
with is comparatively large, so its size should be as small
as possible. Therefore, the size of Primary Table in this
evaluation was decided to be 16 entries, considering the size
of a general TLB which is implemented with a CAM as well is
generally from a dozen to several dozens entries. Additionally,
it is desirable that the objects which are frequently marked
are not evicted from the dedicated tables as much as possible.
Therefore, the size of Secondary Table was assumed to be
double the size of Primary Table, that is, the size of Secondary
Table was assumed to be 32 entries with four ways and 8 sets
configuration.

In this evaluation, to compare the differences caused by
changing the size of the dedicated tables, we prepared other
sized sets of tables. One set is implemented with 16-entry
Primary Table and 64-entry Secondary Table. The other is
implemented with 32-entry Primary Table and 64-entry Sec-
ondary Table.

B. Evaluation Results

In this evaluation, we measured the execution cycles of GC,
without and with the hardware support mechanism. Addition-
ally, to evaluate how much GC affects the total performance
of the system, we measured the average suspension time.

1) Executions Cycles of GC: The total execution cycles
of GC is shown in Fig. 6. We have evaluated following one

TABLE III
THE FREQUENCY OF SUSPENSION IN EACH PROGRAM.

(MS) (CO) (P1)
AOBench 3,363 8,937 3,364
GCBench 235 467 235
crypto.aes 198 279 198

crypto.signverify 40 42 20
compress 20 29 20

serial 357 693 356

existing GC and three types of hardware supported GCs;
(MS) Existing Mark & Sweep. (baseline)
(P1) Hardware supported GC (16CAM-32RAM)
(P2) Hardware supported GC (16CAM-64RAM)
(P3) Hardware supported GC (32CAM-64RAM)

where ‘16CAM-32RAM’ means that the dedicated tables
consist of 16-entry CAM and 32-entry RAM. Each bar is
normalized to the execution cycles of (MS). The legend in
Fig. 6 shows the breakdown items of total cycles. They
represent the cycles for marking objects referred from roots
directly (‘MarkRoot’), the cycles for marking child objects
(‘ScanMarked’) and the cycles for freeing a part of the heap
area where dead objects occupy (‘Sweep’).

According to the result, with all benchmark programs, the
performance of (P1) is higher than (MS). This is because
ScanMarked was reduced with hardware support. Especially,
with crypto.signverify, ScanMarked accounts for large ratio in
the total cycles of (MS). For this reason, (P1) can provide
a good performance, and the total GC cycles are reduced by
20.7%. With all benchmark programs, the total GC cycles are
reduced by 10.2% on average.

Here, comparing (P1), (P2), and (P3), the results are almost
same. This is because most of frequently marked objects
can be well managed even with small-sized tables of (P1).
However, with crypto.aes, the larger the size of tables is, the
better the result is. This is because, in this benchmark program,
the number of objects which are marked frequently is much
higher than the number of entries which can be managed.
Therefore, with some programs, larger-sized tables may be
required.

Now, the access latency for the dedicated tables should be
considered while the execution cycles of GC are reduced.
In this evaluation, we assumed that the access latency for
Primary Table is two cycles and for Secondary Table is one
cycle, and estimated the overhead of the hardware supported
GC by multiplying the access counts for those two tables by
the access latency of each table. As a result, we confirmed
that the ratio of the overhead to the cycles for GC with
our proposal is about 1.8%, and this is sufficiently small.
In addition, operations for Secondary Table can be done in
parallel with marking routine as described in Section V-A2.
Therefore, some of the overhead for operating Secondary Table
can be concealed, and the substantial overhead is smaller than
1.8%.

2) Average Suspension Time caused by GC: Next, the
average suspension time caused by GC is shown in Fig. 7. We



Fig. 7. The average suspension time caused by GC.

calculated the average of suspension time per GC execution by
dividing the total sum of suspended time by the frequency of
suspension shown in TABLE III. The evaluation results with
following three GCs are shown in Fig. 7.

(MS) Existing Mark & Sweep. (baseline)
(CO) Existing Concurrent GC
(P1) Hardware supported GC (16CAM-32RAM)

Each bar in Fig. 7 is normalized to the result of (MS).
According to the result, with many benchmark programs, the
suspension time is reduced with (P1). This is because the
cycles per GC execution are reduced by hardware support.
Although Concurrent GC (CO) aims to shorten the suspension
time at the cost of the throughput as mentioned in Section II-B,
the suspension time significantly increases with AOBench
and compress. This is because GC consumes relatively small
cycles with these programs and synchronization overhead
appears large. Even with these programs, the suspension time
is restrained with (P1). With all the benchmark programs, we
confirmed that the average suspension time is reduced by about
32.7% at a maximum, and about 13.5% on average.

C. Estimation of the Hardware Cost

In this section, we discuss the hardware cost which appears
in the hardware supported GC. As mentioned in Section VI-A,
Primary Table with 16 entries and Secondary Table with four
ways eight sets configuration are used. On one hand, 32 bits
are required as the width of each field in Primary Table for
managing the addresses of marked objects, and two four-bit
fields are required for managing indices of objects which are
registered just before and after an object. In addition, four bits
are required for each register, which manages the head of the
list, the tail of the list, or the number of objects in the Primary
Table. Hence, Primary Table can be configured in 80 Bytes
CAM and three four-bit registers.

On the other hand, Secondary Table has Victim Index and
the field which holds the addresses of the objects, and the
number of addresses which can be held in a set of Secondary
Table is the same as the number of ways. In this evaluation,
the number of ways is defined as four, and Victim Index can
be implemented with a 2-bit counter. Therefore, each set of

Secondary Table requires two bits for the counter and 32×4 =
128 bits for managing the addresses of the objects. Hence,
Secondary Table can be configured in 130 Bytes RAM. Thus,
the total hardware cost is only 210 Bytes, and we confirmed
that the hardware cost of proposed method is quite small.

VII. CONCLUSION

In this paper, we proposed a hardware supported technique
to improve the object tracing routine which is required in
many GC algorithms. In this technique, we added dedicated
tables to a processor for managing marked objects. Thereby,
the overhead caused by conventional redundant marking was
reduced by referring these tables while GC is running, and we
achieved high performance GC.

To validate the effectiveness of the hardware supported
GC, we evaluated the performance with a simulator. As a
result, we confirmed that the total GC cycles were reduced
by 20.7% at a maximum compared with previous Mark &
Sweep. Additionally, while the throughput decreases and the
suspension time increases with some benchmark programs
with Concurrent GC, we confirmed that the hardware sup-
ported GC can suppress such performance degradation.

One of our future work is to study a new GC algorithm
which is not ridden by conventional algorithms, that is, which
can highly cooperate with some assistant hardware. In this
paper, we proposed a hardware supported GC, but only object
tracing routine of whole GC execution is improved. Therefore,
in case when the marking routine occupies little part of GC
in a program, this technique can not improve the performance
effectively. Hence, we will study a new GC algorithm which
is optimized for using additional hardware, and would like to
find the way which leads to the dramatic improvement of GC
performance.

REFERENCES

[1] J. McCarthy, “Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I,” Communications of the ACM, vol. 3,
pp. 184–195, Apr. 1960.

[2] M. Minsky, “A LISP Garbage Collector Algorithm Using Serial Sec-
ondary Storage,” Massachusetts Institute of Technology, Tech. Rep.,
1963.

[3] G. E. Collins, “A Method for Overlapping and Erasure of Lists,”
Communications of the ACM, vol. 3, pp. 655–657, Dec. 1960.

[4] S. Nakamura et al., Garbage Collection - Algorithms and Implementa-
tions (Japanese). SHUWA SYSTEM CO.,LTD, 2010.

[5] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman, and
A. Owshanko, “A Parallel, Incremental and Concurrent GC for Servers,”
in Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’02), May. 2002, pp. 129–140.

[6] I. Takeuchi et al., “Lisp can be “Hard” Real Time,” in Proc. Japan Lisp
User Group Meeting (JLUGM), May. 2000.

[7] C. Click, G. Tene, and M. Wolf, “The Pauseless GC Algorithm,” in
Proc. 1st ACM/USENIX Int’l Conf. on Virtual Execution Environments
(VEE’05), 2005, pp. 46–56.

[8] N. Binkert et al., “The gem5 Simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, pp. 1–7, May. 2011.

[9] H. Boehm, “An artificial garbage collection benchmark,”
http://www.hpl.hp.com/personal/Hans Boehm/gc/gc bench.html.

[10] S. Fujita, “Ambient occlusion benchmark,” http://code.google.com/p/
aobench/.

[11] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko, “SPECjvm2008
Performance Characterization,” in Proc. SPEC Benchmark Workshop on
Computer Performance Evaluation and Benchmarking, 2009, pp. 17–35.




