
Exploiting Bloom Filters
for Saving Power Consumption
of Auto-Memoization Processor

Masayoshi FUJII∗, Yuuki SATO∗, Tomoaki TSUMURA∗ and Yasuhiko NAKASHIMA†
∗Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp
†Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, Japan

Email: nakashim@is.naist.jp

Abstract—We have proposed a processor which can exploit
value locality in programs by automatically applying computation
reuse. The processor which we call auto-memoization processor
dynamically detects functions and loop iterations as reusable
blocks, and stores their input sequences and results into a
lookup table. When the current input sequence matches one
of the stored input sequences on the table, the stored result
associated with the matched input sequence is written back to
the registers and caches. In the previous implementation, a part
of the table is implemented with a CAM for achieving associative
search for input matching with small overhead. However, CAMs
consume considerably large energy, area and manufacturing cost.
Therefore, CAM size should be as small as possible for improving
practicality of the auto-memoization processor. In this paper, we
propose a low-power implementation of the auto-memoization
processor by utilizing a RAM and a Bloom filter. The result
of the simulation experiment shows that power consumption of
the table is reduced by 67.5% at a maximum and by 50.4% on
average.

I. INTRODUCTION

So far, various speed-up techniques exploiting some paral-
lelisms in some granularities for microprocessors have been
proposed. These techniques aim to improve the performance
of microprocessors by executing some several sized tasks
simultaneously. However, many programs have a few dis-
tinct parallelisms, and it is very difficult to extract latent
parallelisms. Therefore, effectiveness of these techniques has
proved to be limited.

Meanwhile, we have proposed a processor called the auto-
memoization processor[1] which exploits value locality by
utilizing computation reuse. In contrast to techniques exploit-
ing some parallelisms, the auto-memoization processor aims
to improve the performance by avoiding recomputation. The
auto-memoization processor automatically and dynamically
detects functions and loop iterations as reusable blocks, and
stores their input sequences and results into a lookup table.
When the current input sequence matches one of the past
input sequences, the auto-memoization processor reuses the
result stored on the table to avoid recomputation. For reducing
overheads for searching the table, fast associative search is re-
quired. Therefore, the table is implemented with a CAM (Con-
tent Addressable Memory) for achieving associative search

for input matching with small overhead. However, CAMs
consume considerably large energy, area and manufacturing
cost. Therefore, CAM size should be as small as possible for
improving practicality of the auto-memoization processor. In
this paper, we propose a low-power implementation of the
auto-memoization processor by utilizing a RAM and a Bloom
filter[2] without performance degradation.

II. AUTO-MEMOIZATION PROCESSOR

Computation Reuse is a well-known speed-up technique in
the software field. It is storing the input sequences and the
results of some computation blocks, such as functions, for
later reuse and avoiding recomputing them when the current
input sequence matches one of the past input sequences.
It is called memoization[3] to apply computation reuse to
computation blocks in programs. We have proposed an auto-
memoization processor which dynamically detects functions
and loop iterations as reusable blocks, and memoizes them
automatically on the processor.

The auto-memoization processor is equipped with the mem-
oization engine, MemoTbl and MemoBuf in addition to com-
ponents of a common processor. MemoTbl is a set of tables for
storing input/output sequences of past executed computation
blocks. MemoBuf works as a write buffer for MemoTbl.
Entering to a memoizable block, the processor refers to
MemoTbl and compares the current input sequence with the
past input sequences which are stored in MemoTbl. In the
following, we call this comparison ‘reuse test.’ If the current
input sequence matches one of the stored input sequences
in MemoTbl, the memoization engine writes back the stored
outputs, which are associated with the matched input sequence,
to the registers and caches. This omits the execution of the
block and reduces total execution time. On the other hand,
if the current input sequence does not match any past input
sequences, the processor stores the current inputs and outputs
of the block into MemoBuf while executing the block as usual.
Reaching the end of the block, the memoization engine stores
the content of MemoBuf into MemoTbl for future reuse.

The structure of MemoTbl is shown in Fig. 1. MemoTbl
consists of four tables:

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 4th Int'l Symp. on Computing and Networking (CANDAR'16)Copyright (C) 2016 IEEE

Fig. 1. Structure of MemoTbl.

FLTbl: for start addresses of computation blocks.
InTbl: for input data sets of computation blocks.
AddrTbl: for input address sets of computation blocks.
OutTbl: for output data sets of computation blocks.
FLTbl, AddrTbl, and OutTbl are implemented with RAMs.

On the other hand, InTbl is implemented with a ternary CAM,
so that input data can be found fast by associative search.
In the following, the structure of each table in MemoTbl are
described.

Each FLTbl entry corresponds to a reusable computation
block. Each FLTbl entry holds whether the block is a function
or a loop (ForL) and the start address of the computation block
(addr).

Each InTbl entry has an index for FLTbl (FLTbl idx),
which represents the associated computation block of the input
stored in the entry, and also holds input values (input values).
Since each InTbl entry can hold a single cache line, an input
sequence over multiple cache lines is stored onto InTbl by
using several entries. When a variable is read as an input value,
its whole cache line is stored into an InTbl entry, masking the
other parts than the variable in the cache line with “don’t care”
values of ternary CAM. Each InTbl entry also holds an index
key for its parent entry (parent idx) because input sequences
are managed as a tree structure as mentioned later.

AddrTbl has the same number of entries as InTbl, and each
AddrTbl entry corresponds to the InTbl entry which has the
same index. Each AddrTbl entry has an input address which
should be tested next (next adr), and a flag (ec flag) which
shows whether it is the terminal entry of an input sequence
or not. Each AddrTbl entry also has a pointer (OutTbl idx),
which refers to an OutTbl entry for associated outputs, when
the input matching succeeds.

Each OutTbl entry has FLTbl idx, addresses (output addr)
and values (output values) of an output sequence. Each OutTbl
entry also has an index for next OutTbl entry (next idx)
because an output sequence may be stored over multiple
OutTbl entries.

Now, an input sequence for a certain computation block can
be represented as a sequence of tuples, each of which contains
an address and a value. In a certain computation block, the
series of input addresses sometimes branch off from each
other. For example, after a branch instruction, what address
will be referred next relies on whether the branch was taken
or untaken. Accordingly, the universal set of the different input
sequences for an computation block can be represented as

1 int a = 3, b = 4, c = 8;
2 int calc(x){
3 int tmp = x + 1;
4 tmp = tmp + a;
5 if(tmp < 7)
6 tmp = tmp + b;
7 else
8 tmp = tmp + c;
9 return(tmp);

10 }
11 int main(void){
12 calc(2); /∗ x = 2, a = 3, b = 4 ∗/
13 b = 5; calc(2); /∗ x = 2, a = 3, b = 5 ∗/
14 a = 5; calc(2); /∗ x = 2, a = 5, c = 8 ∗/
15 a = 3; calc(2); /∗ x = 2, a = 3, b = 5 ∗/
16 return(0);
17 }

Fig. 2. A sample code.

Fig. 3. Tree of input sequences.

a multiway input tree, and the auto-memoization processor
holds input sequences as a tree structure. For example, if the
processor executes the sample program shown in Fig. 2, the
tree structure of input sequences for the function calc will be
formed as shown in Fig. 3. Each node of the tree represents
an input value, and each edge represents the address which
should be referred next, and End represents the terminal of a
sequence. Each input sequence (i), (ii) and (iii) corresponds to
the function call at line 12, 13 and 14, respectively, in Fig. 2.
In the input sequences (i) and (ii), the variable b is read as
the third input, whereas the variable c is read in the input
sequence (iii). This is because the value of variable a which
is read as the second input differs from the past input value,
and the result of the branch instruction at line 5 changes.

III. A LOW-POWER IMPLEMENTATION

In this section, we describe the problem of the auto-
memoization processor and the overview of our proposal to
address this problem.

A. Problems of the Auto-Memoization Processor

As mentioned in section II, because fast associative search
is required for input matching, InTbl of the auto-memoization
processor is implemented with a CAM. Although CAMs pro-
vide fast associative search, they consume considerably large
energy, area and manufacturing cost. Therefore, on general-
purpose processors, CAMs are used for only certain units,
for example, TLB and LSQ, and besides, their size is about
16KBytes at most.

In contrast, the previous auto-memoization processor is
supposed to be implemented with a 128KBytes CAM, and
it is not practical to be implemented on a chip. Therefore,

for improving practicality of the auto-memoization processor,
CAM size should be reduced.

B. Low-Power Implementation of MemoTbl

To reduce required CAM size, we propose a low-power
implementation of the auto-memoization processor with neg-
ligibly small performance degradation.

1) Reducing CAM Size: At first, we consider that MemoTbl
which is searched associatively should be implemented with
a RAM instead of a CAM. However, each entry should be
sequentially accessed for associative search on RAMs. If
InTbl is implemented with only a RAM instead of a CAM,
the lookup overhead will considerably increase. Accordingly,
increasing the lookup overhead may cancel the benefit of
computation reuse, or will even degrade the total performance.

Several existing techniques utilize a filter for reducing the
energy consumption or CAM size [4], [5], [6]. Thus, in order
to reduce reuse test overheads, we utilize not only a RAM but
also a filter which can identify whether an entry is stored or
not on a table without searching the table. In addition, because
the auto-memoization processor holds input sequences as a
tree structure, we design an entry management suitable for
the tree structure, in order to reduce reuse test overheads.

2) Reducing Overheads with a Filter: In reuse test, the
previous auto-memoization processor can compare an input
data set with all stored input data sets on InTbl simultaneously,
because InTbl is implemented with a CAM. Therefore, the
lookup overhead which costs per input data set in reuse test
is constant, and the overhead is independent of the number of
registered entries or whether the current input data set matches
any of the registered entries or not. On the other hand, if InTbl
is implemented with a RAM, each entry needs to be accessed
and checked sequentially. Therefore, lookup overhead raises
proportionately to the number of entries which are accessed
until the matching entry is found. Additionally, when failing in
reuse test, namely, no matching entry exists on InTbl, lookup
overhead becomes very large due to input matching for all
registered entries on InTbl.

We propose a solution for these problems by utilizing a
Bloom filter[2]. Bloom filters can test whether an element is
registered in a database or not without searching the database.
When using a Bloom filter for our proposal, whether an input
data set is registered on InTbl or not can be tested before
searching InTbl. If the result of the test is negative, the input
data set proves to be not registered on InTbl. In consequence,
the auto-memoization processor can judge that reuse test has
failed without searching InTbl. Therefore, only the calculation
overhead for checking the Bloom filter costs when there is no
matching entry on InTbl.

3) Reducing Overheads Considering Tree Structure: As
mentioned in the section above, lookup overhead when failing
in reuse test can be reduced by utilizing a Bloom filter. On the
other hand, if an entry which matches the current input data
set is registered on InTbl, the test by the Bloom filter results
in positive, and entries on InTbl must be accessed sequentially
after all, for the matched entry being found.

To address this problem, we focus on that the auto-
memoization processor holds input sequences as a tree struc-
ture. Assume that, an entry which matches the current input
data set is detected during a reuse test for an reusable block.
An entry which matches the next input data set of the reusable
block is one of the child nodes of the detected entry in an input
tree structure. In other words, lookup overhead on RAM-based
InTbl can be minimized by considering parent-child relations
of an input tree structure. Therefore, the lookup overhead will
be reduced.

In addition, we adopt a set-associative strategy for the
RAM-based InTbl for testing multiple child nodes at once.
Thereby, the number of accesses to the RAM can be reduced.

IV. REDUCING OVERHEADS BY UTILIZING FILTERS

In this section, we describe how to reduce the lookup
overhead with filters when reuse test fails. First, we describe
the outline of a Bloom filter. After that, we describe the outline
of Parallel Counting Bloom filter and how to utilize the filter
in our proposal.

A. Bloom Filter

A Bloom filter is a data structure which can be used to test
whether an element is registered in a database or not. A Bloom
filter consists of a bit array and some hash functions. For a
Bloom filter, following two operations are prepared;

addition: to add a new element to a Bloom filter.
query: to test whether an element is stored in a Bloom filter.
In order to add an element, hash values for the element are

calculated with hash functions, and all bits correspond to the
hash values are set. On the other hand, in order to query for
an element, its hash values are calculated with hash functions,
and all bits correspond to the hash values are checked. If all
of the bits have not been set, it is judged that the element is
not registered. On the other hand, when all the bits correspond
to the hash values have been set, it is judged that the element
is registered in the set.

However, a Bloom filter can give false-positive matches
because of hash collisions. Therefore, after a query for an
element is judged as positive, it must be confirmed whether
the element really exists in the database or not. On the other
hand, when a query for an element is judged as negative, it
is guaranteed that the element does not exist in the database,
because Bloom filter does not give false-negatives.

When utilizing a Bloom filter for reuse test in the auto-
memoization processor, there are two points at issue. The
first point is that a Bloom filter does not support deletion
of registered elements. The size of MemoTbl is finite, and
deletion of elements must be supported.

The second point is the overhead which is caused by oper-
ations for a Bloom filter. A bit array as a Bloom filter needs
to be accessed at every operation addition and query. In case
when the array is implemented with a one-port RAM, access
overhead rises proportionately to the number of hash functions,
and it can considerably degrade the total performance of the
auto-memoization processor. On the other hand, in case when

Fig. 4. Structure of a PCBF.

the array is implemented with a multi-port RAM, the area cost
will be a concern. Thus, for a low-power implementation of
the auto-memoization processor, a filter which does not have
such problems is required.

B. Parallel Counting Bloom Filter

We adopt a Parallel Counting Bloom Filter (PCBF) which
is an expanded variant of Bloom filters, for the low-power
implementation. The structure of a PCBF is shown in Fig. 4. A
PCBF is different from an original Bloom filter in two points.
The first point is that a PCBF consists of as many arrays
as hash functions, while a Bloom filter consists of only one
array. The second point is that each array element is a counter,
while each element of the array for Bloom filter is a 1-bit cell.
Therefore, when the number of hash functions is k, addition on
a PCBF is achieved by incrementing a corresponding element
to the calculated hash value for each of k arrays, instead of
setting k bits in an array. Meanwhile, query on a PCBF is
achieved by checking the value of the element corresponding
to the calculated hash value is non-zero for each of k arrays.
Because each array element can hold the number of stored
elements which have the hash value corresponding to the
element, deletion can be achieved on a PCBF by decrementing
an array element for each of k arrays, unless and until array
elements do not overflow.

In addition, k arrays of a PCBF can be independently
accessed in parallel because each array corresponds to one
of the k hash functions, and no operations on PCBF cause
access conflicts on the arrays. Therefore, operating overhead
on a PCBF is smaller than that on a Bloom filter. We
utilize a PCBF for a low-power implementation of the auto-
memoization processor. As explained in section III-B1, when
InTbl is implemented with a RAM, reuse test overhead will
increase. Thus, by querying a PCBF before searching InTbl,
the overhead of when reuse test fails can be reduced.

We utilize a PCBF with six hash functions based on the
calculation defined in the paper[6]. Each array corresponding
to each hash function has 1366 elements, and each element is
an 8-bit counter. The codomain of each hash function ranges
from 0 to 1365.

V. OPTIMIZED SEARCH FOR INPUT TREE STRUCTURE

In this section, we describe search optimization for an
input tree structure with considering parent-child relation as
mentioned in section III-B3, for reducing the lookup overhead
on RAM-based InTbl when reuse test succeeds.

1 int a = 3, b = 0;
2 int calc(x){
3 int tmp = x + 1;
4 tmp = tmp + a;
5 tmp = tmp + b;
6 return(tmp);
7 }
8 int main(void){
9 for(i=0;i<5;i++) {

10 b = b + i;
11 calc(2);
12 }
13 return(0);
14 }

Fig. 5. A loop that includes a function call.

Fig. 6. Input tree of the function calc.

A. Characteristics of Input Trees

Some reusable blocks have a certain characteristic regarding
their input sequences. The characteristic is that many input
sequences branch off at an input, or an input node has many
children nodes in the input tree. For example, when the auto-
memoization processor executes the sample program shown in
Fig. 5, the tree structure of input sequences for the function
calc will be formed as shown in Fig. 6. In this program, only
the value of b changes every time while the loop is executed.
Therefore, entries which correspond to the variable b are
created. The number of created entries are five, which is equal
to the number of loop iterations. On the previous CAM-based
InTbl, these five entries can be searched for simultaneously.
However, on the RAM-based InTbl, these five entries have
to be tested sequentially, and lookup overhead for the input
variable b will be a concern.

B. Structure of MemoTbl

For utilizing parent-child relation in the input trees, we
propose a RAM-based InTbl which consists of three units; a
small CAM, a direct map RAM (1-way RAM), and an n-way
set associative RAM (n-way RAM). Here, nodes in an input
tree are classified into three types; root nodes, nodes which
have sibling nodes, and nodes which have no sibling node.
When a new input data set is stored on RAM-based InTbl,
one of these units is selected considering the characteristics
of these three types of nodes. Firstly, a root node should be
associatively searched for, because it has no parent node and
parent-child relation can not be utilized when it is searched for.
Therefore, a small CAM is used for root nodes, and the nodes
can be searched for rapidly. Secondly, we consider non-root
nodes which have sibling nodes. When a node matches the

Fig. 7. Structure of InTbl and AddrTbl.

current input data set, one of the child nodes of the matched
node can match the next input data set. Hence, the matched
node has several children, or its children have siblings, the
number of required accesses for the next input matching can
be the same as the number of the sibling nodes at a maximum.
Thus, for reducing the number of required accesses, an n-way
RAM which can read n entries at once is used and the sibling
nodes are stored in entries in a line of the n-way RAM. Finally,
we consider non-root nodes which have no sibling node. If a
matched node has only one child, only the child node can
match the next input data set, and the number of required
accesses for the next input matching is only one. For this
reason, a 1-way RAM is suitable for storing such a node.

Accordingly, we modified the structure of InTbl and Ad-
drTbl. The modified structure is shown in Fig. 7. InTbl consists
of (a) a small CAM, (b) a 1-way RAM and (c) an n-way
RAM, and the fields of each entry are the same as the fields
of the previous implementation of InTbl mentioned in section
II. Besides, each line of (c) the n-way RAM has n entries.
In addition, each line of the n-way RAM has the index (next
set) for chaining the lines when the number of sibling nodes
is larger then n.

Each entry on AddrTbl should correspond to each entry
on InTbl, so that the structure of AddrTbl also should be
modified as InTbl. Therefore, AddrTbl consists of (d) a 1-way
RAM corresponding to (a), (e) a 1-way RAM corresponding
to (b), and (f) an n-way RAM corresponding to (c). The
fields of AddrTbl in each entry are same as the fields of the
previous implementation of AddrTbl mentioned in section II.
In addition, we installed the index (next entry) in AddrTbl for
indicating the line which should be tested next.

C. How to Store Input Data into RAM-based InTbl
We explain how to store input sequences shown in Fig. 6. At

first, the variable x is stored into the small CAM because this
input is the root node on the input tree shown in Fig. 6. Root
nodes have no parent node, and parent-child relation can not be
used for searching them. Therefore, for avoiding performance
degradation, root nodes should be stored on the CAM.

On the other hand, either the 1-way RAM or the n-way
RAM is used for storing nodes except for roots. Which RAM
to be used is decided by considering whether the node has a
sibling or not. For example, the node “x = 2” has only one
child “a = 3”, and the node “a = 3” has no sibling. Such
nodes which have no sibling node are stored on the 1-way
RAM. Therefore, when a matched node has only one child
node, the next entry is stored on the 1-way RAM or is not
stored on any table. Hence, if the child of the matched entry
exists in the 1-way RAM, only the entry needs to be tested,
and the reuse test overhead costs for the only one entry.

When the entry corresponding to the node “a = 3” is found
on the 1-way RAM, five entries for variable b should be
tested next. Such nodes which have sibling nodes are stored
on the same line of the n-way RAM, and can be tested
simultaneously. Accordingly, the number of accesses to RAM
can be reduced even if many entries should be searched next.

VI. EVALUATION

We have evaluated the performance and energy consumption
of newly designed MemoTbl, and compared with the previous
implementation.

A. Simulation Environment
We have implemented the new structure of MemoTbl con-

sists of a CAM, a 1-way RAM, an n-way RAM, and a PCBF

TABLE I
SIMULATION PARAMETERS

Processor
architecture SPARC-V8
#cores 4 cores
issue width single
issue order in-order
non-memory IPC 1

MemoBuf
size 64 KBytes

MemoTbl
FLTbl size 8 KBytes
InTbl/AddrTbl/OutTbl size 128 KBytes each
Comparison latency

reg. ⇔ CAM (128/8/4 KBytes) 9/3/3 cycles / 32Bytes
Cache ⇔ CAM (128/8/4 KBytes) 10/4/4 cycles / 32Bytes
reg. ⇔ RAM 2 cycles / 32Bytes
Cache ⇔ RAM 3 cycles / 32Bytes

Write back latency
MemoTbl ⇒ reg. 1 cycle / 32Bytes
MemoTbl ⇒ Cache 2 cycles / 32Bytes

PCBF
hash function 6 pieces
array size 1366 Bytes
counter 8 bit
false positive rate 1.00 %
latency 2 cycles

D1 cache
size 32 KBytes (4 ways)
access latency 2 cycles
miss penalty 10 cycles

D2 cache
size 2 MBytes (4 ways)
access latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles / set

on an in-house simulator of auto-memoization processor. The
configuration of the simulator is shown in TABLE I.

We have measured the energy consumption of MemoTbl by
using Wattch[7] which is an architecture-level power analysis
framework. The platform architecture shown in TABLE I is
based on SPARC64-III[8]. The large CAM for the previous
implementation is modeled on DC18288[9] (32Bytes × 4K
lines). On the other hand, the small on-chip CAM for a
low energy implementation is modeled on eFlexCAM[10]
(32Bytes × 256 lines). The latencies of the large CAM are
defined on the assumption that the clock frequency of the
processor is 10-times higher than the CAM, and the latencies
of the small CAM are defined on the assumption that the clock
frequency of the processor is 4-times higher than the small
CAM.

We define the latency of query with the PCBF as two cycles,
and we have estimated the overhead of the PCBF under the
assumption that the false-positive rate of the PCBF is constant.
The PCBF consists of six hash functions and six arrays which
have 1366 elements. Hence, we define the false-positive rate
of PCBF as 1.00% based on the calculation defined in the
paper[6].

Fig. 8. Execution Cycles.

Fig. 9. Energy Consumption of MemoTbl.

B. Execution Cycles and Energy Consumption

We have evaluated a low-power implementation of the auto-
memoization processor by executing benchmark programs in
SPEC CPU95 suites with ‘train’ dataset. We have evaluated
following three configurations;

(M) Previous implementation (CAM 128KBytes)
(P1) Proposal 1: A low-power implementation

(CAM 8KBytes, RAM 120KBytes)
(P2) Proposal 2: A low-power implementation

(CAM 4KBytes, RAM 124KBytes)
Figure 8 shows the execution cycles of these processors, and
each bar in Fig. 8 is normalized to the number of executed
cycles by the processor without memoization mechanisms. The
legend in Fig. 8 shows the breakdown items of total cycles.
They represent the executed instruction cycles (‘exec’), the
comparison overhead between the CAM and the registers or
the caches (‘read’), the writeback overhead (‘write’), the first-
level and the shared second-level data cache miss penalties
(‘D$1’, ‘D$2’), the register window miss penalty (‘window’),
and the overhead for the PCBF (‘bfcheck’), respectively.

Figure 9 shows the energy consumption of InTbl, AddrTbl,
and the PCBF with above three configurations, and each bar
in Fig. 9 is normalized to the energy consumption of (M). The

legend in Fig. 9 shows the breakdown items of total energy
consumption. They represent the energy consumption of the
PCBF (‘PCBF’), the energy consumption of the RAM which
is for AddrTbl (‘Addr’), the energy consumption of the RAM
which is for InTbl (‘In RAM’), and the energy consumption
of the CAM which is for InTbl (‘In CAM’), respectively.

As shown in Fig. 8, compared with (M), the total execution
cycles of (P1) is reduced by 2.7% on average and by 8.3% at
a maximum, and the total execution cycles of (P2) is reduced
by 2.5% on average and by 6.4% at a maximum. Although
we expected that the performance of the auto-memoization
processor will decrease, the result shows that performance is
rather improved. In addition, as shown in Fig. 9, compared
with (M), the energy consumption is reduced by 46.1% on
average and by 65.6% at a maximum with (P1), and is reduced
by 50.4% on average and by 67.5% at a maximum with (P2).

C. Examination

Execution Cycles: First, with 129.compress, 130.li,
132.ijpeg and 147.vortex, the performance of a low power
implementation of the auto-memoization processor is higher
than (M) the previous auto-memoization processor, as shown
in Fig. 8. This is because that ‘read’ the overhead for reuse
test is reduced on the new implementation, and much more
reusable blocks can gain performance than on the previous
implementation. There are two possible reasons for why ‘read’
is reduced. One is that access latencies of a CAM depend
on the size of the CAM. On the implementation proposed in
this paper, CAM size can be smaller than on the previous
implementation, and the latency per access can be smaller
than the large CAM which the previous implementation uses.
This reduces the total lookup overhead for CAM. The other
is that the latencies of RAMs are lower than the latencies of
CAMs. On the previous implementation, because InTbl is im-
plemented with only a CAM, all entries can be tested at once.
Although, latency per access is rather high. In contrast, on
the proposed implementation with RAMs, latency per access
is very small although multiple entries should be accessed
sequentially for reuse test. Therefore, when the number of
required accesses until a matching entry being found is small,
the total overhead can be smaller than using only a CAM.
Consequently, the performance is improved.

However, with 124.m88ksim, the performance gain of the
new implementation is canceled out by ‘bfcheck.’ For a pro-
gram as 124.m88ksim which originally has large performance
gain with computation reuse, the effect on the reduction of
‘read’ by PCBF is limited, and the ‘bfcheck’ overhead appears
to be relatively large. However, contrary to expectations, total
performance is not degraded with all programs by using RAM-
based InTbl, and is rather improved with some programs.

Energy Consumption: As shown in Fig. 9, with all bench-
mark programs except 129.compress, the energy consumption
of the new implementation is considerably lower than that
of previous implementation. The energy consumption of the
small CAM per access is smaller than that of the large CAM
which is used in the previous implementation. In addition,

the number of accesses to the CAM is reduced because the
CAM is accessed only when root nodes are searched for.
Besides, the energy consumption of 128KBytes RAM per an
access is about 20 times less than that of 128KBytes CAM
per an access. Thus, the reduction of the energy consumption
on the CAM more than made up for the additional energy
consumption on the RAMs and the PCBF. Accordingly, the
total energy consumption is reduced.

However, with 129.compress, the energy consumption of
(P1) is slightly higher than that of (M). In this program, the
number of total execution cycles is small, and the benefit of
computation reuse appears to be little. With a program such
as 129.compress, the number of accesses to MemoTbl during
reuse test is small, and the energy consumption for accessing
MemoTbl is also small. As a result, the increase of energy
consumption by PCBF appears relatively high.

VII. CONCLUSION

In this paper, for improving practicality of the auto-
memoization processor, we proposed a low power implemen-
tation of the auto-memoization processor by utilizing RAMs
and a Bloom filter. By utilizing a Bloom filter, the size of
CAM can be smaller than the previous implementation without
performance degradation. Through an evaluation with SPEC
CPU95 benchmark suite programs, although we expected that
performance of the auto-memoization processor decreases, the
total execution cycles are reduced by 2.5% on average and by
6.4% at a maximum. Additionally, the energy consumption of
the lookup table for computation reuse is reduced by 50.4% on
average and by 67.5% at a maximum. One of our future work
is to design a structure of a Bloom filter which is suitable for
the auto-memoization processor.

REFERENCES

[1] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and
Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Proc. Parallel and Distributed Computing and Networks, Feb.
2007, pp. 245–250.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692

[3] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, 1992.

[4] F. Castro, D. Chaver, L. Pinuel, M. Prieto, F. Tirado, and M. Huang,
“Load-store queue management: An energy-efficient design based on a
state-filtering mechanism,” in 2005 International Conference on Com-
puter Design. IEEE, 2005, pp. 617–624.

[5] F. Castro, L. Pinuel, D. Chaver, M. Prieto, M. Huang, and F. Tirado,
“Dmdc: delayed memory dependence checking through age-based fil-
tering,” in Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2006, pp.
297–308.

[6] N. Kurata, R. Shioya, M. Goshima, and S. Sakai, “Address order viola-
tion detection with parallel counting bloom filters,” IEICE Transactions
on Electronics, vol. 98, no. 7, pp. 580–593, 2015.

[7] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. 27th
Annual Intl. Symp. on Computer Architecture, Jun. 2000, pp. 83–94.

[8] SPARC64-III User’s Guide, HAL Computer Systems/Fujitsu, May 1998.
[9] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC

DC18288, 1st ed., Feb. 2003.
[10] eSilicon Corporation, HiSilicon Licenses eSilicon’s 40nm Silicon-Proven

TCAMs for High-Performance Network Chips, Dec. 2011.

