
A Concurrency Control
in Hardware Transactional Memory

Considering Execution Path Variation
Anju HIROTA∗, Keisuke MASHITA∗ and Tomoaki TSUMURA∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Lock-based thread synchronization techniques have
been commonly used in parallel programming on multi-core
processors. However, lock can cause deadlocks and poor scal-
abilites, and Transactional Memory (TM) has been proposed
and studied for lock-free synchronization. On TMs, transactions
are executed speculatively in parallel as long as they do not
encounter any conflicts on shared variables. On general HTMs,
hardware implementations of TM, conflicts can degrade the
performance of HTM because of the overhead for re-execution
of transactions. To address this problem, various transaction
scheduling algorithms for avoiding conflicts have been proposed.
However in the existing algorithms, execution path variation is
not considered at all. Some transactions have branch instructions,
and they cause execution path variations of transaction, resulting
in poor efficacy of the scheduling algorithms. In this paper, we
propose a novel concurrency control based on the execution time
of transactions with considering execution path variation. The
result of the experiment shows that the execution time of HTM
is reduced 61.6% at a maximum, and 13.8% on average with 16
threads.

I. INTRODUCTION

On multi-core processors, multiple threads can run in par-
allel for speed-up. Therefore, parallel programming becomes
more important for programmers to utilize processor perfor-
mance. In order to run multiple threads in parallel on shared
memory systems, mutual exclusion is required, and lock has
been commonly used. However, lock-based methods can cause
deadlocks, and they lead to poor scalability. In addition, lock
is not so convenient because it is difficult to adjust locking
granularity for each program.

To solve this problem, Transactional Memory (TM) [1]
has been proposed as a lock-free synchronization mechanism.
On TMs, transactions are executed speculatively as long as
they do not encounter any conflicts on shared variables.
However, the interim results of transactions may be discarded
because transactions are executed speculatively. Hence, when
a transaction modifies a value in the shared memory, TM
saves both new and old values (version management). TM also
keeps tracks of each memory access, checking whether each
requested datum has been accessed yet by another transaction
or not (conflict detection). Hardware Transactional Memories
(HTMs) have hardware mechanisms for version management

and conflict detection. Therefore, each of version management
and conflict detection costs only a small delay overhead.

In general, transactions, which have conflicted on a shared
variable once each other, tend to conflict repeatedly on the
same shared variable if they are executed in parallel again.
This conflict repetition will bring severe performance degrada-
tion of HTMs. Transaction scheduling algorithms considering
conflict patterns or conflict frequencies will avoid some of
such repetitive conflicts. However, the execution path and the
execution time of each transaction can vary, and this will
deteriorate efficiency of the scheduling algorithm. To address
this problem, we propose a concurrency control mechanism
based on a transaction scheduling considering execution path
variation. With this control mechanism, before starting a
transaction, a thread estimates the execution time of the
transaction by predicting execution paths, and delays starting
the transaction so that the expected conflict will come slightly
after the commit of competing transactions.

In this paper, we aim to make the following contributions:

1) We propose a novel concurrency control mechanism for
effectively avoiding conflicts on HTM. The mechanism
precisely predicts execution time of each transaction,
and adjust the execution timing of the transaction.

2) We consider execution path variation in the transactions
for precisely estimating execution time of each transac-
tion.

3) We evaluate the transaction scheduling. The results show
that the execution cycles can be reduced 61.6% at a
maximum and 13.8% on average.

II. A CONCURRENCY CONTROL CONSIDERING
EXECUTION PATH VARIATION

In this section, we describe overviews of HTM, and point
out a problem of general HTM. After that, we propose a
transaction scheduling for avoiding conflicts based on the
execution time which is estimated considering execution path
variation.

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 4th Int'l Symp. on Computing and Networking (CANDAR'16)Copyright (C) 2016 IEEE



Fig. 1. Conflict resolution on general HTM.

A. Conflict Resolution on HTM and its Problem

In this section, we describe how conflicts are resolved on
LogTM[2] which is the most general HTM system. Figure 1
shows an example where the thread thr.1 executes the trans-
action Tx.X and thr.2 executes Tx.Y. Now, assume that thr.1
has issued load A and thr.2 has issued load B. First, when
thr.2 tries to issue store A, thr.2 sends thr.1 a request for
accessing the address A (at t1). After thr.1 receives the request
from thr.2, thr.1 detects a conflict because thr.1 has already
accessed A. Then, thr.1 sends thr.2 a Nack (t2). When thr.2
receives the Nack from thr.1, thr.2 gives up issuing store
A and stalls Tx.Y, waiting for thr.1 to commit (t3). After
that, when thr.1 tries to issue store B, thr.2 detects another
conflict and thr.2 sends a Nack to thr.1. If thr.1 stalls at
this time, thr.1 and thr.2 will be waiting for each other, and
a deadlock will be caused. To avoid causing the deadlock,
thr.1 aborts Tx.X (t4). Thereby, thr.2 is now allowed to issue
store A (t5). After a while, thr.1 restarts Tx.X (t6). In this
way, threads avoid deadlocks on HTM. However, stalling and
restarting transactions may degrade the performance of HTM.

B. Conflict Prediction based on Execution Time

As mentioned in Section II-A, the performance of HTM can
be degraded by stalls of transactions originating from conflicts.
Especially, transactions which have conflicted once each other
tend to conflict repeatedly, because the threads often access
the same shared variables when they are executed again. In
this paper, we propose a concurrency control mechanism for
avoiding conflicts based on this knowledge. Before a thread
starts a transaction, the thread predicts whether the transaction
will cause a conflict or not. To this end, the thread examines
whether the transaction had conflicted with some running
transactions on the other threads or not in the past. If the
transaction had conflicted with one of the running transactions,
the thread compares two temporal parameters τ1 and τ2,
where τ1 is the predicted remaining time until the competing
transaction commits, and τ2 is the predicted remaining time

(a) Predicting a conflict. (b) Avoiding a conflict.

Fig. 2. Conflict prediction based on execution time.

until the conflict will be caused. If the thread will access
the conflicted address after the competing thread committed,
namely τ1 < τ2, the thread predicts that a conflict will not be
caused this time, and starts the transaction. On the contrary,
if τ1 > τ2, the thread waits for τ1 becomes shorter than
τ2 without starting the transaction. In order to implement
this conflict prediction, two temporal data of each transaction
should be remembered. One is how long the whole execution
time of the transaction is, and the other is how much time later
a conflict will be caused after the transaction starts. Before
starting a transaction, a thread predicts a conflict using these
temporal data.

Figure 2 (a) shows an example where a thread predicts that
a conflict will be caused, and Fig. 2 (b) shows an example
the thread avoids the conflict by waiting before starting its
transaction. Assume that Tx.X had already conflicted with
Tx.Y, and each thread remembers the temporal data of the two
transactions for conflict prediction. First, when thr.2 tries to
execute Tx.Y, thr.2 sends all the other threads a Req.Info which
is a request acquiring for running transaction ID and remaining
time until the competing transaction commits (t1). After thr.1
receives the Req.Info, thr.1 sends thr.2 the transaction ID ‘X’
and τ1 the predicted remaining time of Tx.X (t2). Then, thr.2
compares τ1 sent back from thr.1 with τ2 the time until the
conflict will be caused between Tx.X and Tx.Y (t3). If τ1 is
shorter than τ2, thr.2 starts to execute Tx.Y. On the other hand,
as Fig. 2 (a) shows, if τ2 is shorter than τ1, thr.2 waits for
being allowed to start Tx.Y. At this time, thr.2 sends a Waiting
message to thr.1. After a while, as Fig. 2 (b) shows, when
τ1 becomes shorter than τ2, thr.1 sends a Wakeup message
to thr.2 for prompting thr.2 to execute Tx.Y (t4). When thr.2
receives this Wakeup message, thr.2 starts to execute Tx.Y (t5).
In this way, threads can avoid causing a conflict.

Stall is also a ‘waiting’ mechanism for conflict resolution.
In contrast to stall, the waiting mechanism before starting
transactions will not cause any other new conflicts, because
the thread waits without accessing any addresses.



C. Predicting Execution Time Considering Execution Path
Variation

Although threads can avoid many conflicts by the conflict
prediction as mentioned in Section II-B, threads may still
cause conflicts if threads fail the conflict prediction. Especially,
when the execution path of a transaction varies because of
conditional branches, the past temporal data for the transaction
become unreliable, and the accuracy of the conflict prediction
will largely decline. Therefore, the transaction execution time
should be predicted precisely considering such execution path
variation. However, unlike branch prediction algorithms, lo-
cal history of branch instructions in transaction can not be
used, because the execution path of a transaction need to be
predicted before the transaction starts. Hence, we introduce
a conflict prediction mechanism which exploits the idea of
global branch prediction[3]. Global branch prediction man-
ages a shared history of all conditional branches, and predicts
the direction of a branch instruction based on the pattern
history of other recent branch instructions. The idea of global
branch prediction can also be considered as that the execution
path after a branch instruction is predicted from the execution
path just before the branch instruction.

To apply this idea to conflict prediction, we employ pattern
history of load/store accesses as an execution path expression.
We define the pattern of load and store ‘global load/store
history.’ In the conflict prediction mechanism, the execution
time of each transaction is remembered associated with the
global load/store history just before the transaction. When the
transaction is executed again, the remembered execution time
associated with the current global load/store history is acquired
and used for conflict prediction. In this way, our conflict
prediction method can consider execution time variation of
a transaction by using global load/store history as a key.

III. IMPLEMENTATION

In this section, we will show how threads predict conflicts
and execute their transaction considering execution path vari-
ation.

A. How to Remember Historical Data

In this section, we will explain how threads remember
historical data for conflict prediction. For achieving the conflict
prediction, some temporal data of transactions should be
managed and used as parameters. However, the temporal data
such as whole execution time of a transaction will vary at
each execution because of cache misses or stalls, even if its
execution path does not change. Hence, we use the number of
memory accesses as an approximate expression of execution
time.

In the example shown in Fig. 3, thr.1 first gets the global
load/store history before starting Tx.X (t1). In this example,
assume that the length of global load/store history pattern
being used for conflict prediction is two. Now, the latest two
memory accesses before starting Tx.X are load and load, and
the set ‘load-load’ is remembered as global load/store history.
Then, when thr.2 tries to issue store A (t2), thr.1 detects a

Fig. 3. How to remember Historical Data.

conflict and sends thr.2 a Nack (t3). After receiving the Nack,
thr.2 remembers ‘3’ as the approximate value representing
the time from the start of Tx.Y to the conflict between Tx.X
and Tx.Y (t4). After that, thr.2 stalls Tx.Y. When each thread
commits its transaction, the thread remembers the approximate
total execution time of its transaction associated with global
load/store history which was refered to before the thread starts
to execute the transaction. In this example, the total number
of memory accesses in Tx.X is ‘5’ because thr.1 issues load
B, load C, load A, store C, and store B during the
execution of Tx.X. Then, thr.1 remembers the number ‘5’ as
the approximate total execution time associated with global
load/store history of Tx.X ‘load-load’ (t5). In this way, each
threads remember the data which are required for the conflict
prediction.

B. How to Predict and Avoid Conflicts Considering Execution
Path Variation

In this section, we explain how a thread predicts a future
conflict with two examples. Assume that some temporal data
for conflict prediction are collected for a while after the
situation shown in Fig. 3. Then thr.1 and thr.2 try to execute
Tx.X and Tx.Y respectively again. This situation is illustrated
in Fig. 4. When thr.1 tries to execute Tx.X, thr.1 acquires
the global load/store history, and estimates the execution time
of Tx.X as the remembered time associated with the global
load/store history. In this example, the global load/store history
just before Tx.X is ‘store-load.’ Therefore, thr.1 predicts that
the execution time of Tx.X will be ‘3’ which is remembered
associated with ‘store-load’ (t1). After that, when thr.2 tries
to execute Tx.Y, thr.2 sends all the other threads a Req.Info
for predicting a conflict (t2). Receiving the Req.Info, thr.1
calculates the remaining time until Tx.X commits. In this
example, thr.1 gets the value ‘2’ as the remaining time by
subtracting ‘1’ as the number of memory accesses which thr.1
has already issued from ‘3’ as the predicted execution time of
Tx.X. Therefore, thr.1 sends thr.2 the transaction ID ‘X’ and
‘2’ as the remaining time until Tx.X commits (t3). Then, thr.2



Fig. 4. Execution flow when thr.2 predicts that a conflict will not caused.

compares ‘2’ which is sent back from thr.1 with ‘3’ as the time
until the conflict between Tx.X and Tx.Y (t4). Thr.2 predicts
that a conflict will not be caused and starts to execute Tx.Y,
because ‘3’ as the time until the conflict between Tx.X and
Tx.Y is longer than ‘2’ as the time until thr.1 commits.

In contrast to Fig. 4, Fig. 5 shows an example where a thread
predicts that a conflict will be caused. In this example, the
execution path of Tx.X varies although thr.1 executes the same
transaction as Fig. 4. When thr.1 tries to execute Tx.X, thr.1
gets the global load/store history for predicting the execution
time of Tx.X (t1). In this example, the global load/store history
just before Tx.X is ‘load-load,’ and thr.1 predicts the execution
time of Tx.X as ‘5’ which is associated with ‘load-load.’
After that, when thr.2 tries to execute Tx.Y, thr.2 sends a
Req.Info (t2). Receiving this, thr.1 gets the value ‘4’ as the
remaining time until Tx.X commits, and thr.1 sends thr.2 ‘4’
and the transaction ID ‘X’ (t3). Now, the value ‘3’ which thr.2
remembers associated with Tx.X is smaller than the value ‘4’
which thr.2 receives from thr.1. Therefore, thr.2 predicts that
a conflict will be caused, and waits for being allowed to start
Tx.Y. At this time, thr.2 sends thr.1 a Waiting message with ‘3’
as the time until the conflict between Tx.X and Tx.Y (t4). After
a while, as Tx.X issues load C and load A, the remaining
time of Tx.X becomes smaller than ‘3’ which is sent from
thr.2 as the time remaining until the conflict. Therefore, thr.1
predicts that a conflict will not be caused this time, and sends
thr.2 a Wakeup message (t5). When thr.2 receives it, thr.2 starts
to execute Tx.Y (t6).

In this way, threads predict a conflict before starting its
transaction and avoid the conflict by waiting for being allowed
to execute its transaction. If a thread does not consider
execution path variation, the thread may start to execute its
transaction too early to avoid the conflict or the waiting
time can be longer than the minimum necessary time to
avoid the conflict. To address this problem, in our transaction
scheduling, threads get the global load/store history just before
executing the transaction. Hence, even if the execution time
of the transaction varies because of execution path variation,
threads can rather precisely predict the execution time of its
transaction and avoid conflicts.

Fig. 5. Execution flow when thr.2 predicts that a conflicts will be caused.

IV. PERFORMANCE EVALUATION

In this section, we show the evaluation results and estimate
the additional hardware cost.

A. Evaluation Environment

We used a full-system execution-driven functional simulator
Wind River Simics[4] in conjunction with customized memory
simulators built on Wisconsin GEMS [5] for evaluation. Simics
provides a SPARC-V9 architecture and boots Solaris 10, and
GEMS provides a detailed timing simulation for the mem-
ory subsystem. The detailed configuration of the simulated
processor is shown in TABLE I. The topology and the link
latency of interconnect network are defined based on LogTM.
We have evaluated the execution cycles of 11 workloads
from GEMS microbench, SPLASH-2 benchmark suite [6], and
STAMP benchmark suite [7] with 16 threads. We configured
the length of global load/store history as eight, and the latest
eight memory accesses are used for conflict prediction.

B. Evaluation Results

The evaluation results with following four HTM configura-
tions are shown in Fig. 6.

(B) LogTM (baseline)
(R) Reference model; predicts conflicts by using the past

shortest execution time of each transaction, without
considering execution path variation

(PS) Proposal #1; predicts conflicts by using the past
shortest execution time of each transaction consid-
ering execution path variation.

(PL) Proposal #2; predicts conflicts by using the past
longest execution time of each transaction consid-
ering execution path variation.

Fig. 6 shows the total sum of execution cycles of all 16 threads
and its breakdown. Each bar in both figures is normalized to
the baseline (B). For simulating multi-threaded execution on a
full-system simulator, the performance variability [8] must be
considered. Hence, we tried 10 times on each benchmark, and
measured 95% confidence interval. The confidence intervals
are illustrated as error bars in Fig. 6.



TABLE I
SPECIFICATIONS OF THE SIMULATED PROCESSOR

Processor SPARC V9
#cores 32 cores
clock 4 GHz
issue width single
issue order in-order
non-memory IPC 1

D1 cache 32 KBytes
ways 4 ways
latency 3 cycles

D2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 4 GBytes
latency 450 cycles

Interconnect network latency 14 cycles

When the global load/store history and the execution path
of the transaction do not correlate to each other, the total
number of memory accesses which the thread issues can be
different from the remembered value, even though the thread
has the same global load/store history pattern. Therefore, we
have evaluated two variants of the proposal. With (PS), if the
number of memory accesses in the current execution is smaller
than the remembered value, the value is updated with the
current value. Hereby, the past smallest number of memory
accesses is used for conflict prediction. On the other hand,
with (PL), the past largest number of memory accesses is
used for conflict prediction. As a result, with (PS), because
threads underestimate the remaining time until the transaction
commits, the wasteful waiting time can be reduced. On the
other hand, because threads overestimate the remaining time
until the transaction commits with (PL), the waiting time will
increase compared with (PS), while the number of conflicts can
be reduced than (PS). Also with respect to (R), two variations
can be assumed as same as the proposal models. We prelimi-
narily evaluated the two variants for (R), and it is found that the
model which uses the past shortest time achieves considerably
better performance than the model which uses the past longest
time. Hence, we show only the former model for (R) in
Fig. 6. The legend in Fig. 6 shows the breakdown items of the
total sum of cycles. They represent the waiting cycles before
starting transactions by the proposed conflict prediction (Wait),
the barrier synchronization cycles (Barrier), the stall cycles
(Stall), the exponential backoff cycles (Backoff), the aborting
overheads (Aborting), the execution cycles in the transactions
which are aborted/committed (Bad trans/Good trans), and the
execution cycles out of transactions (Non trans).

As shown in the figures, both (PS) and (PL) achieve better
performance than (B) with most of all programs. In summary,
the execution cycles are reduced 61.6% at a maximum, and
13.8% on average with (PL). In addition, either (PS) or (PL)
achieves better performance than (R) with all benchmark
programs, except for Radiosity.

We estimate the additional hardware cost required for the
conflict prediction mechanism. For a 16-core processor, the
total additional hardware cost is estimated at only 1.6 KBytes

Fig. 6. The sum of the total execution cycles ratio.

per core, or 26 KBytes per processor. The required size is cal-
culated as for remembering historical data of the transactions
which appear in the benchmark programs, but it will be enough
also for many practical applications because STAMP programs
deal with real-world problems. Even when it is insufficient for
a certain program, the program can correctly run with slightly
deteriorated prediction accuracy.

C. Detailed Examination

In the following paragraphs, we take up some characteristic
programs and analyze them.

a) Prioqueue: The performance of Prioqueue with (PS)
declines compared with (R) by increasing Bad trans, Abort-
ing, and Stall. We examined the program, and it is found
that even with the same global load/store history, the exe-
cution time of a transaction largely varies in each execution.
Therefore, with (PS), the conflict prediction often fails and
conflicts are caused. On the other hand, the performance with
(PL) is better than (R). Although Wait with (PL) is larger
than (R) and (PS), threads can avoid many conflicts. Thereby,
the performance with (PL) is improved over about 40% by
reducing Bad trans, Aborting, Backoff, and Stall.

b) Btree: Aborting, Stall, and Backoff are largely reduced
with Btree on (PS) and (PL), although Wait is larger than
other programs. We examined this program, and it is found
that Btree has two transactions. One (we call it Tx.Insert)
includes both read and write accesses to a shared variable, and
the other (we call it Tx.Lookup) includes only read accesses
to the shared variable. Therefore, many conflicts are caused
between Tx.Insert and Tx.Insert, but Tx.Insert rarely conflicts
with Tx.Lookup. In Tx.Insert, whether a conflict is caused or
not depends on its execution path. Figure 7 shows a digest
code inside Tx.Insert. The transaction Tx.2 in the function
BTreeNode split() includes an if-then-else statement, and the
execution path inside Tx.2 varies depending on whether the
‘node’ is a leaf or a non-leaf in the binary tree. When the
function is called at line 5, the first argument passed to the
formal argument ‘node’ is not a leaf but always the root, as
shown in the figure, and the condition at line 22 becomes



1 void BTree insert(BTree∗ tree, key type t key, char∗ value, int tid){
2 :
3 if(BTreeNode isFull(tree−>m root)){
4 BEGIN TRANSACTION(3);
5 median = BTreeNode split(tree−>m root, tree, tid);
6 :
7 COMMIT TRANSACTION(3);
8 }
9 :

10 while(!node−>isLeaf){
11 :
12 if(BTreeNode isFull(child)){
13 median = BTreeNode split(child, tree, tid);
14 :
15 }}
16 :
17 }
18 :
19 key ptr pair BTreeNode split(BTreeNode ∗node, BTree∗ tree, int tid)

{
20 :
21 BEGIN TRANSACTION(2);
22 if(node−>isLeaf){
23 :
24 }else{
25 :
26 }
27 COMMIT TRANSACTION(2);
28 :
29 }

Fig. 7. A digest code of Btree.

always false. On (PS) and (PL), this can be predicted based on
the load/store pattern before BTreeNode split() being called,
and threads can effectively avoid conflicts compared with on
(R). On the other hand, the performance of (PL) is lower
than (PS). This is because wasteful wait is caused and Wait
increases.

c) Deque: The performance of all models is improved
with Deque. We examined this program and it is found
that the transaction in this program is composed of a few
instructions and the execution time of the transaction is very
short. Therefore, waiting time for avoiding a conflict is very
short and Wait is very small. As a result, the total execution
cycles are considerably reduced by avoiding conflicts with few
waiting overhead.

d) Barnes: The performance of both (PS) and (PL)
with Barnes is better than (B), and the performance gain
mainly results from decrease of Barrier. This is because many
conflicts and aborts are avoided, and no threads are largely
delayed by conflicts and aborts. Besides, the performance
of (PL) is not much different from (PS). This is because
Barnes has a transaction whose number of memory accesses
is exceptionally very large and the time until the conflict is
very small. Therefore, there is not much room to reduce Wait
with both (PS) and (PL).

e) Cholesky, Kmeans: Bad trans, Aborting, Backoff, and
Stall of these programs slightly decrease. However, total
performance gain is small. This is because Non trans occupies
most of the total cycles of these programs. Especially, Kmeans
has transactions whose execution time do not vary, even

though their execution paths vary. Therefore, the performance
of Kmeans is improved only 1% at a maximum compared with
(R).

f) Radiosity, Vacation: In these programs, the execution
time of a transaction can vary even though the thread has
the same global load/store history in each execution. As
a result, conflict prediction often fails. We examined these
programs and it is found that Vacation has a transaction whose
execution time varies based on a random input value. On the
other hand, Radiosity has a transaction whose execution time
becomes shorter and shorter as being executed repeatedly. Our
proposal can not precisely predict conflicts for such types of
transactions. One possible approach to address this problem
is that if huge variation is observed on the execution time
of a transaction with the same global load/store history, the
transaction is excluded from the target of conflict prediction.

g) Contention, Raytrace, Genome: The performance of
both (PS) and (PL) with these programs does not much differ
from (R), even though Stall is considerably reduced. We
examined these programs, and it is found that transactions
whose number of memory accesses does not change occupy
more than 80% of total number of transactions. Thereby, the
ratio of the performance improvement is just a little smaller
than the other programs.

V. RELATED WORK

So far, various techniques for improving HTM have been
proposed. To reduce the re-execution overhead of transac-
tions, some techniques for optimizing rollbacks have been
proposed [9], [10], [11]. Besides, many thread scheduling
techniques for reducing conflicts by controlling transactional
sequences have also been proposed [12], [13], [14].

To improve the performance of parallel execution, Yoo
et al. [15] have proposed a method based on the concept
of adaptive transaction scheduling (ATS). ATS dynamically
dispatches transactions and controls the number of concur-
rently executing transactions. Thereby, ATS can improve the
performance of workloads which lack for parallelism because
of high contentions. The throughput of Radiosity is improved
1.97x with ATS. However, the improvement with almost all
programs other than Radiosity and Deque is quite small and
lower than only 5%. On the other hand with our transaction
scheduling, the execution cycles is maximally reduced 61.6%
with Deque. This means that the throughput is improved to
about 2.60x with Deque. In addition, the execution cycles
of four programs are reduced over about 20% with our
proposal, or the throughput is improved to 1.25x. Especially,
the performance of Raytrace is not improved at all with ATS,
while it is improved about 30% with our method.

Blake et al. [16] have proposed a method focusing on
common memory locations which are accessed in multiple
transactions. In this method, locality of memory access on a
transaction executed consecutively is called ‘similarity’ and
the similarity is calculated by using Bloom filter. If the
similarity exceeds a threshold, the transactions are executed
sequentially. The performance of this method is evaluated



with STAMP benchmark suite [7] and rather improved. How-
ever, the evaluation results are not practical because they are
evaluated with 64 threads. It is known that the programs in
STAMP benchmark suite bring so many conflicts and aborts
when they are executed with many threads. The performance
with 64 threads is drastically lower even than the performance
of being executed serially with only one thread. Hence, the
estimation of the baseline performance and the performance
improvement in [16] should be quite unfair, because only
serializing transactions can increase performance.

Akpinar et al. [17] have proposed some novel ideas for
conflict resolution policies on HTMs, such as alternating
priorities of transactions in many various ways based on the
execution time or the total number of stalled transactions and
so on.

Armejach et al. [18] have proposed a prediction mechanism
called HARP to avoid repetitive aborts. HARP is inspired by
branch prediction and achieves high accuracy of a conflict
prediction by considering the latest behavior of transactions
and locality in conflicting memory references. The approach
used in HARP is partly similar to our conflict prediction, but
there are some distinct differences. Specifically, only the trans-
actions, which are predicted not to conflict each other, can run
in parallel on HARP. On the other hand with our transaction
scheduling, even the transactions which will conflict each other
can run partially in parallel, or their execution can be partially
overlapped. In addition, HARP requires 2.06kB memory cells
per core, and the hardware cost is larger than the cost for our
method.

All these methods, anyway, do not consider execution path
variation in transactions which is caused by branch instruc-
tions. Hence, performance can not be improved significantly
in case the execution path in a transaction varies. On the
other hand, our novel transaction scheduling can improve the
performance of many practical programs because it can avoid
causing conflicts even if the execution path in a transaction
varies.

VI. CONCLUSIONS

In this paper, we propose a concurrency control mechanism
considering execution path variation. With this mechanism,
threads estimate the execution time of transactions based
on the idea of global branch prediction, and predict con-
flicts before starting a transaction by using remembered data
associated with the global load/store history patterns. We
have evaluated the method by comparing with both LogTM
and a reference model, through experiments with GEMS
microbench, SPLASH-2 benchmark suite, and STAMP bench-
mark suite. The evaluation results show that HTM with the
conflict prediction mechanism decreases the total execution
cycles 61.6% at a maximum, and 13.8% on average, with 16
threads.

However, the conflict prediction sometimes fails when the
execution time of a transaction varies with the same global
load/store history pattern. Therefore, we need to improve the
prediction accuracy by considering another data of transactions

such as load/store addresses. In addition, we also should
consider whether to exclude transactions, whose execution
time can not be predicted precisely, from the target of this
concurrency control mechanism.

ACKNOWLEDGMENT

This research was partially supported by the grant from
Tatematsu Foundation.

REFERENCES

[1] M. Herlihy et al., “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” in Proc. 20th Int’l Symp. on Computer
Architecture (ISCA’93), May. 1993, pp. 289–300.

[2] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based Transactional Memory,” in Proc. 12th Int’l Symp.
on High-Performance Computer Architecture (HPCA’06), Feb. 2006, pp.
254–265.

[3] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch
prediction,” in Proc. 24th Annual IEEE/ACM Int’l Symp on
Microarchitecture(MICRO-24). ACM, 1991, pp. 51–61.

[4] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[5] M. M. K. Martin et al., “Multifacet’s General Execution-driven Mul-
tiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[6] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in Proc. 22nd Annual Int’l. Symp. on Computer Architecture
(ISCA’95), 1995, pp. 24–36.

[7] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” in Proc.
IEEE Int’l Symp. on Workload Characterization (IISWC’08), Sep. 2008.

[8] A. R. Alameldeen et al., “Variability in Architectural Simulations
of Multi-Threaded Workloads,” in Proc. 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA’03), Feb. 2003, pp. 7–18.

[9] E. Moss and T. Hosking., “Nested Transactional Memory: Model and
Preliminary Architecture Sketches.” in Science of Computer Program-
ming, 2006, pp. 186–201.

[10] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit,
M. M. Swift, and D. A. Wood, “Supporting Nested Transactional
Memory in LogTM,” in Proc. 12th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Oct.
2006, pp. 1–12.

[11] A. McDonald, J. Chung, B. D. Caristrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun., “Architectural Semantics for Practical
Transactional Memory,” in Proc. 33rd Annual Int’l Symp. on Computer
Architecture (ISCA’06), 2006, pp. 53–65.

[12] A. Shriraman, S. Dwarkadas, and M. L. Scott., “Flexible Decoupled
Transactional Memory Support,” in Proc. 35th Annual Int’l Symp. on
Computer Architecture (ISCA’08), 2008, pp. 139–150.

[13] S. Tomic, C. Perfumo, C. Kulkami, A. Armejach, A. Cristal, O. Unsal,
T. Harris, and M. Valero., “Eazyhtm, Eager-lazy Hardware Transactional
Memory,” in Proc. 42nd Annual IEEE/ACM Int’l Symp. on Microarchi-
tecture (MICRO-42), 2009, pp. 145–155.

[14] M. Lupon, G. Magklis, and A. González, “A Dynamically Adaptable
Hardware Transactional Memory,” in Proc. 43rd Annual IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO-43), 2010, pp. 27–38.

[15] R. M. Yoo and H.-H. S. Lee, “Adaptive Transaction Scheduling for
Transactional Memory Systems,” in Proc. 20th Annual Symp. on Paral-
lelism in Algorithms and Architectures (SPAA’08), Jun. 2008, pp. 169–
178.

[16] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom Filter Guided
Transaction Scheduling,” in Proc. 17th Int’l Conf. on High-Performance
Computer Architecture (HPCA-17), 2011, pp. 75–86.

[17] E. Akpinar, S. Tomić, A. Cristal, O. Unsal, and M. Valero, “A Compre-
hensive Study of Conflict Resolution Policies in Hardware Transactional
Memory,” in Proc. 6th ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT’11), 2011.

[18] A. Armejach, A. Negi, A. Cristal, O. Unsal, P. Stenstrom, and T. Harris,
“Harp: Adaptive abort recurrence prediction for hardware transactional
memory,” in Proc. 20th Int’l Conf. on High Performance Computing
(HiPC’13), Dec. 2013, pp. 196–205.




