
Eliminating Cascading Stall
on Hardware Transactional Memory

Sho MIYAKE∗, Keisuke MASHITA∗, Ryohei YAMADA∗ and Tomoaki TSUMURA∗
∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Multi-core processors are equipped in almost every
computer systems from smartphones to high-end server ma-
chines, and shared memory programming becomes increasingly
important for programmers to utilize the multi-core systems.
Lock-based thread synchronization techniques have been com-
monly used in parallel programming on multi-core processors.
However, lock can cause deadlocks and this leads to poor
scalability. To make up for the shortcomings of lock, transactional
memory (TM) is proposed and widely studied. On TMs, transac-
tions are executed speculatively while any conflicts do not occur
on shared variables. However, wasteful re-executions and waits
can cause low concurrency and drastic performance degradation.
In this paper, we propose a method for resolving Cascading Stall
which is one of the main factors of low concurrency on TM.
The result of the experiment shows that the method can reduce
execution time 56.5% in maximum and 11.1% in average with
16 threads.

I. INTRODUCTION

Nowadays, multi-core processors are equipped in almost ev-
ery computer systems, from smartphones that we are carrying
around, to server-class machines in data centers which provide
us cloud services. On multi-core processors, multiple threads
can run in parallel for speed-up. Therefore, shared memory
programming becomes increasingly important for program-
mers to utilize the multi-core systems. When multiple threads
run in parallel on shared memory systems, lock-based thread
synchronization techniques have been commonly used for
mutual exclusion. However, lock can cause deadlocks, and this
leads to poor scalability. Then, Transactional Memory (TM)
[1] has been proposed as a lock-free synchronization mecha-
nism. With TM, programmers simply declare code blocks as
transactions which include load/store instructions on shared
memory values. On TM, as long as any conflicts do not occur
on shared variables, transactions are executed speculatively.
However, the interim execution results may be discarded due
to speculative execution. Thus, when a transaction modifies a
value on shared memory, TM should save both new and old
values (version management). Besides, TM should keep track
of memory accesses, and check whether or not each requested
datum has been already accessed by another transaction (con-
flict detection). Hardware Transactional Memories (HTMs),
which are the hardware implementations of TM, achieve both
version management and conflict detection on hardware for
small delay overhead. As mentioned above, transactions are
executed speculatively for speed-up on TM, thus the execution

concurrency with TM is higher than with lock. However,
the performance may decline drastically when the number of
concurrently executed transactions decreases due to wasteful
re-executions and waits. In such a situation, some of wasteful
waits can be caused cascadingly, and the problem is called
Cascading Stall[2]. In this paper, we propose a method to
detect Cascading Stall by observing the dependency among
the transactions, and resolve Cascading Stall at appropriate
time to prevent concurrency from becoming low.

II. RESEARCH BACKGROUND

We describe overviews of TM and HTM.

A. Transactional Memory

Transaction mechanism has been used for achieving data
consistency on database systems. TM is an implementation
of the transaction mechanism for shared memory synchro-
nization. On TM, a transaction is defined as an instruction
sequence which covers a critical section, and the transaction
has to satisfy atomicity and serializability. In order to ensure
atomicity and serializability, TM should keep track of memory
accesses, and check whether or not each requested datum has
been accessed yet by another transaction. When a transaction
tries to access the same memory address which has already
been accessed by another transaction, a conflict is detected
between the transactions. In case that a conflict is detected,
TM selects a transaction among the conflicted transactions and
stalls the selected transaction. When the conflicted transactions
are aborted to avoid deadlocks, the aborted transactions will
be re-executed later. On the other hand, if any conflicts do
not occur through a transaction, TM commits the transaction.
As far as any conflicts do not occur through a transaction, the
transactions can run speculatively under TM in parallel. Thus,
TM generally makes execution concurrency higher than lock-
basesd systems. The mechanisms for version management and
conflict detection can be implemented in hardware or software.
Some TM systems operate completely in software (STMs) [3].
However, STM has more overheads than HTMs.

B. Conflict Detection and Version Management

With HTMs, conflict detection and version management are
implemented in hardware. Each of both policies of conflict de-
tection and version management is classified into Eager/Lazy.

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 3rd Int'l Symp. on Computing and Networking (CANDAR'15), pp.147-153Copyright (C) 2015 IEEE



Fig. 1. Eager Conflict Detection and Resolution.

With Eager conflict detection policy, just when a memory
access occurs in a transaction, it is checked that whether the
access causes a conflict or not.

Here, we explain Eager conflict detection and the conflict
resolution. Fig.1 shows an example where Thread1 executes
Tx.X and Thread2 executes Tx.Y, and Thread1 and Thread2
have already issued load A. First, when Thread1 tries to is-
sue store A (t1), a conflict is detected (t2) because Thread2
has already accessed to the address A. In this case, Thread1
receives a NACK from Thread2, and stalls Tx.X until Thread2
commits Tx.Y (t3). Afterwards, when Thread2 tries to issue
store A (t4), another conflict is detected because the same
address has already been accessed by Thread1. In this case,
as Tx.Y is younger than Tx.X, Thread2 aborts its Tx.Y (t5).
At this time, Thread2 waits for restarting Tx.Y to prevent a
conflict with Thread1 from being repeated, and the period from
aborting a transaction to restarting the transaction is called
Backoff. The Backoff period is generally defined based on an
algorithm called Exponential Backoff. This algorithm makes
Backoff increase exponentially as a transaction is aborted
repeatedly. While Thread2 waits a Backoff period, Thread1
receives an ACK and resumes Tx.X (t6) and commits Tx.X
(t7). Then, Thread2 re-executes Tx.Y (t8) without a conflict
with Thread1 in this example.

Next, we explain version management. On TM, interim
results of transactions may be discarded because transactions
are executed speculatively. Hence, when a transaction modifies
a value on the shared memory, HTM generally needs to save
both new and old values. With Eager version management,
old values are stored to log in a thread-private virtual memory
and new values are stored into cache blocks. It makes commits
faster than aborts because TM commits transactions by only
discarding the old values with Eager version management.

With Lazy conflict detection policy, it takes much time from
causing a conflict to detecting the conflict. Consequently, more
execution time of transaction will be wasted than Eager con-
flict detection. In this paper, we adopt Log-based Transactional
Memory (LogTM)[4] which uses combination of Eager conflict

Fig. 2. Cascading Stall.

detection and Eager version management.

III. RESOLUTION OF CASCADING STALL

We refer to a problem called Cascading Stall on TM and
propose a resolution of the problem.

A. Cascading Stall Resulted from a Chain of Conflicts

As illustrated in Fig.1, a transaction can make another
transaction be stalled to avoid conflicts on HTMs. When
some threads execute transactions in parallel, one transaction
may conflict with an already stalled transaction. Then, the
transaction will be stalled as well. On TMs, such a chain
of conflicts causes cascaded stalls, and the problem is called
Cascading Stall. Cascading Stall can lead to poor concur-
rency of the running threads. Fig.2 shows an example where
Cascading Stall is caused. In this example, Thread1 executes
Tx.1, Thread2 executes Tx.2 and Thread3 executes Tx.3. First,
Thread2 tries to issue store A (t1), and Thread1 sends a
NACK to Thread2 because Thread1 has already issued load
A. Then, Thread2 receives the NACK from Thread1, and stalls
Tx.2 (t2). Subsequently, when Thread3 tries to issue store B
(t3), Thread2 sends a NACK to Thread3 because Thread2 has
already issued load B. Then, Thread3 also stalls Tx.3 (t4).
This results in Cascading Stall. In this case, Thread3 is waiting
for Thread2 to commit and Thread2 is waiting for Thread1 to
commit. Thus, if Thread2 aborts Tx.2, Thread3 can resume
Tx.3 without conflicting with Thread1 in this case. Generally,
as more transactions are related to the Cascading Stall, more
and more transactions can stall wastefully.

B. Definition of Conflict Depth

In order to detect and resolve Cascading Stall, we need to
know how much conflicts are cascaded. Therefore, we define
“depth” of conflicts. A thread where a transaction is running
and not stalled has 0-depth conflict. When another thread is
stalled by conflicting with a 0-depth thread, the stalled thread
is defined as 1-depth. Hence, if a thread is stalled by conflicting
with an N -depth thread, the thread is defined as (N+1)-depth.
Besides, in case the maximum depth among the threads whose
transactions are cascadingly stalled is M, we call the situation



Fig. 3. Definition of depth.

“M-depth Cascading Stall,” and we also use the expression
“the depth of Cascading Stall is M.” To resolve Cascading
Stall, we define a threshold T for the depth of Cascading
Stall, and when M the depth of Cascading Stall exceeds T ,
it is judged that the stalls are too much cascaded and the
involved threads should be separated by aborting some of the
transactions.

Here, we explain an example of how to detect and resolve
Cascading Stall. Fig.3(a) shows an example where Thread1
executes Tx.1, Thread2 executes Tx.2, Thread3 executes Tx.3
and Thread4 executes Tx.4. Fig.3(b) shows the dependency
among the transactions at (t1) when 2-depth Cascading Stall
is caused and (t3) when 3-depth Cascading Stall is caused
on Fig.3(a). In this example, assume that the threshold T is
defined as ‘3.’ Thus, if a thread reaches 3-depth, Cascading
Stall is detected. First, as well as Fig.2, Thread1 is executing
Tx.1, and Thread2 has Tx.2 stalling because of the conflict with
Thread1, and Thread3 has Tx.3 stalling because of the conflict
with Thread2, and 2-depth Cascading Stall is caused (t1). At
this time, Thread1, Thread2, Thread3 and Thread4 is 0-, 1-,
2- and 0-depth, respectively. After that, Thread4 tries to issue
store C (t2), and a conflict is detected because Thread3
has already issued load C. Consequently, Thread4 receives
a NACK from Thread2 which is 2-depth, and the depth of
Thread4 comes up to 3 (t3). In this example, if Tx.2 or Tx.3
is aborted, Tx.3 or Tx.4 can be resumed. Here, assume that
Tx.2 is selected, and Thread2 aborts Tx.2 to resolve Cascading
Stall (t4). Then, Thread3 can continue Tx.3 because Thread3
receives an ACK from Thread2 (t5). In this way, Cascading
Stall is resolved.

C. How to Select Victim Transactions

We refer to following two important points to resolve
Cascading Stall.

• How much the threshold value T should be.
• Which transactions should be aborted to resolve Cascad-

ing Stall.

Fig. 4. Aborting a transaction whose thread is 1-depth to resolve 2-depth
Cascading Stall.

First, we will discuss the former point and consider two
thresholds from different perspectives. In order to resolve
Cascading Stall as soon as possible and not to increase the
number of threads relating to Cascading Stall, we define the
minimum depth of Cascading Stall as one of the thresholds.
In short, if 1-depth thread ThreadX conflicts with another
thread, the depth of ThreadX comes up to 2, and this is the
smallest Cascading Stall. When such a 2-depth Cascading
stall is caused, it is assumed that the Cascading Stall should
be resolved. Hence, we define ‘2’ as one of the thresholds.
On the other hand, Cascading Stall which has small depth
may be resolved soon by only stalling transactions. Thus, we
define the relatively large depth of Cascading Stall as the other
threshold. Through some experiments, we found that conflict
depth seldom reaches 5. Thus, we define 4 as the threshold.

Second, we will discuss the latter point. When one or more
stalled transactions which are related to Cascading Stall are
aborted, one or more conflicts are resolved and some of the
transactions will be resumed. Accordingly, more transactions
can run in parallel than before abort. Thus, we suggest that
transactions are selected to be aborted so that the threads
involved in the Cascading Stall are completely separated. In
this paper, we call the transactions, which are selected to be
aborted, “victim transactions.” We propose following two ways
in consideration of the two thresholds and how to select the
victim transactions.

(P1) When a certain thread reaches 2-depth, 1-depth
threads which are stalled by conflicting with the 2-
depth thread abort their transactions.

(P2) When a certain thread reaches 4-depth, 1-depth
threads and 3-depth threads which are involved in
the Cascading Stall abort their transactions so that
all five threads involved in the Cascading Stall are
completely separated.

Here, we explain these two ways in detail. Fig.4(a) shows
an example where Thread1, Thread2 and Thread3 execute
Tx.1, Tx.2 and Tx.3, respectively. In this example, assume
that (P1) mentioned above is adopted. Fig.4(b) shows the



Fig. 5. Aborting transactions whose threads are 1-depth and 3-depth to
resolve 4-depth Cascading Stall.

dependency among the transactions at (t1), (t2) and (t3). First,
Thread3 conflicts with Thread2 which is 1-depth, and the
depth of Thread3 reaches the threshold 2 (t1). Thus, Thread3
sends Thread2 an Abort Req which is a request to let Thread2
abort Tx.2. On the other hand, Thread2 receives this request
and aborts its Tx.2 (t2). Then, Thread2 sends an ACK as a
reply for the Req.B, and Thread3 resumes Tx.3 after Thread3
receives the ACK (t3).

Subsequently, Fig.5(a) shows an example where Thread1,
Thread2, Thread3, Thread4 and Thread5 executes Tx.1, Tx.2,
Tx.3, Tx.4 and Tx.5, respectively. In this example, assume
that (P2) mentioned above is adopted. Fig.5(b) shows the
dependency among the transactions at (t1), (t2) and (t3). First,
Thread5 conflicts with Thread4 which is 3-depth, and the
depth of Thread5 reaches the threshold 4 (t1). Thus, Thread5
sends an Abort Req to Thread2 and Thread4. On the other
hand, Thread2 and Thread4 receive this request and abort
their own Tx.2 and Tx.4, respectively (t2). Then, each of the
Thread2 and Thread4 sends an ACK as replies for Req.B and
Req.D, and each of the Thread3 and Thread5 resumes Tx.3
and Tx.5 after receiving the ACK. (t3).

IV. IMPLEMENTATION

In this section, we describe additional hardware units for
implementing the resolution of Cascading Stall on HTM and
the execution flow with the additional units.

A. Additional Hardware Units

With the proposed method on HTM, each core has to
manage depth of the own thread so as to detect the Cascading
Stall. Besides, each core also has to retain opponent core IDs
because it is need to know the dependency among the trans-
actions which are involved in Cascading Stall. To implement
the proposed method on HTM, we have installed following
hardware units in each core.

Depth-counter (D-counter)
This counter records depth of the thread which is
executed in own core. This counter has 3-bit width

Fig. 6. Additional hardware units.

Fig. 7. Execution flow and additional hardware in the cases 1) and 2).

to record the number from 0 to 4 because we defined
‘4’ as a threshold.

Core-ID-bitmap (C-bitmap)
This bitmap records opponent core IDs. When a
thread receives a NACK from another thread, the
core records the opponent core ID on this bitmap.
On HTMs, a thread may conflict with more than
two other threads, and the thread should record
the opponent core IDs whose threads sent NACKs.
Therefore, when the total number of cores is n, this
bitmap should have (n − 1)bit width.

B. Management of the Depth

We describe how to manage depth of threads using the
additional hardware. When depth of each thread changes,
recorded values on the additional hardware need to be updated.
Situations where depth of each thread changes are divided into
following three cases;

1) When a thread receives a NACK.
2) When a thread which is stalling its own transaction

receives an ACK.
3) When a transaction is aborted.

We describe how D-counter and C-bitmap are updated in the
cases 1) and 2), using Fig.7. Fig.7 shows an example where
Thread1 executes Tx.1, Thread2 executes Tx.2 and Thread3
executes Tx.3. First, each value of D-counter and C-bitmap is
0, and Thread1 has already issued load A, and Thread2 has
already issued load B. When Thread2 tries to issue store
A, a conflict is detected because Thread1 has already accessed



Fig. 8. Execution flow and additional hardware in the case 3).

to address A. Thus, Thread1 replies a NACK with the value
‘0’ which is stored in D-counter (t1). Then, Thread2 receives
the NACK and Core2 stores the opponent core ID ‘1’ on C-
bitmap, and Core2 increments the value which is sent from
Thread1 and updates D-counter with the calculated value ‘1’
(t2). After that, as Thread3 tries to issue store B, another
conflict is detected because Thread2 has already accessed to
address B. Therefore Thread2 sends a NACK with the value
‘1’ which is in D-counter (t3). Thread3 receives the NACK
and Core3 stores the opponent core ID ‘2’ on C-bitmap, and
Core3 increments the value which is sent from Thread2 and
updates D-counter with the calculated value ‘2’ (t4). Then,
after Thread1 commits Tx.1, Thread2 receives an ACK from
Thread1 (t5). In this case, Thread2 clears the values on both
D-counter and C-bitmap as Thread2 restarts Tx.2. After that,
Thread2 sends a NACK with the value ‘0’ which is in D-
counter (t6). Thus, Thread3 receives the NACK and Core3
increments the value which is sent from Thread2 and updates
D-counter with the new value ‘1’ (t7). In this way, each thread
keeps track of each own depth.

Next, we describe how D-counter and C-bitmap are updated
in the case 3), using Fig.8. Fig.8 shows the same situation
shown in Fig.4. Values of D-counter and C-bitmap on Core1
and Core2 are 0, and Core2 has the opponent core ID ‘1’ on
C-bitmap and has the value ‘1’ due to a conflict with Thread1
which is 0-depth on D-counter. First, Thread3 conflicts with
Thread2 which is 1-depth, and Thread2 replies a NACK
with the value ‘1’ which is in D-counter. Therefore, Thread3
receives the NACK and Core3 stores the opponent core ID
‘2’ on C-bitmap, and Core3 increments the value which is
sent from Thread2 and updates D-counter with the new value
‘2.’ Then depth of Thread3 reaches the threshold 2 (t1). Thus,
Thread3 refers to C-bitmap on Core3, and Thread3 sends an
Abort Req to Thread2 which is 2-depth (t2). When Thread2
receives this request, Thread2 aborts its Tx.2 and Core2 clears
the values on both D-counter and C-bitmap (t3). Afterwards,
as Thread3 receives an ACK from Thread2, Core3 clears the
values on both D-counter and C-bitmap (t4).

TABLE I
SIMULATION PARAMETERS.

Processor SPARC V9
#cores 32 cores
clock 1 GHz
issue width single
issue order in-order
non-memory IPC 1

D1 cache 32 KBytes
ways 4 ways
latency 1 cycle

D2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 8 GBytes
latency 450 cycles

Interconnect network Hierarchical switch topology
link latency 14 cycles

TABLE II
REDUCED CYCLE RATE.

GEMS SPLASH-2 STAMP All
(P1) ave 25.2% 0.9% -3.2% 11.1%

max 56.5% 8.0% -0.5% 56.5%
(P2) ave 5.1% -2.5% -5.4 % 0.3 %

max 15.2% 1.1% 0.3% 15.2%

V. PERFORMANCE EVALUATION

In this section, we show the evaluation results, and consid-
eration of the results.

A. Evaluation Environment

We used a full-system execution-driven functional simulator
Wind River Simics[5] in conjunction with customized memory
simulators built on Wisconsin GEMS [6] for evaluation. Simics
provides a SPARC-V9 architecture and boots Solaris 10, and
GEMS provides a detailed timing simulation for the memory
subsystem. The detailed configuration of the simulated pro-
cessor is shown in TABLE I. We have evaluated the execution
cycles of 9 workloads from GEMS microbench, SPLASH-2
benchmark suite [7], and STAMP benchmark suite [8] with
16 threads.

B. Evaluation Results

The evaluation results with following three HTMs are shown
in TABLE II and Fig.9.

(B) LogTM (baseline)
(P1) When a certain thread reaches 2-depth, 1-depth

threads which are stalled by conflicting with the 2-
depth thread abort their transactions.

(P2) When a certain thread reaches 4-depth, 1-depth
threads and 3-depth threads which are involved in
the Cascading Stall abort their transactions so that
all five threads involved in the Cascading Stall are
completely separated.

Fig.9 shows the execution cycles of the slowest thread in
each HTM. Each bar is normalized to the total execution cycles
of the baseline LogTM (B).



Fig. 9. Execution cycles ratio.

Fig. 10. Example of the case that Backoff cycles increase.

The legend shows the breakdown items of the total cy-
cles. They represent the executed cycles out of transactions
(Non trans), the executed cycles in the transactions which
are committed/aborted (Good trans/Bad trans), the aborting
overheads (Aborting), the exponential backoff cycles (Back-
off ), the stall cycles (Stall), the barrier synchronization cycles
(Barrier).

As a result of the evaluation, the execution cycles with the
proposed HTM (P1) is reduced 56.5% in maximum and 11.1%
in average with 16 threads.

C. Detailed Examination

As shown in Fig.9, the performance is improved with (P1)
in many programs. However, the performance is improved
slightly with (P2) in most programs. In particular, Stall cy-
cles decrease in all programs with (P1). However, Backoff
cycles increase in most programs. Here, we explain the case
that Backoff cycles increase with (P1), using Fig.10. In this
example, Thread1 executes Tx.1, Thread2 executes Tx.2 and
Thread3 executes Tx.3, and assume that Thread1 has already
issued load A and Thread2 has also already issued load
A. When Thread2 tries to issue store A (t1), Thread1 sends
a NACK to Thread2 because Thread1 has already issued
load A. Then, Thread2 receives the NACK from Thread1 and
stalls Tx.2 (t2). Simultaneously, Thread3 issues load A, and
tries to issue store A (t3). As address A has already been
accessed by Thread1 and Thread2, each of the Thread1 and
Thread2 sends a NACK to Thread3. Accordingly, the depth of
Thread3 comes up to the threshold 2 as Thread3 receives the
NACK from Thread2 which is 1-depth. Thus Thread3 sends an
Abort Req to Thread2 (t4), and Thread2 receives the Abort Req
and aborts its Tx.2 (t5). Then, Thread3 receives a NACK from
Thread1 which is 0-depth, therefore Thread3 keeps stalling
although Thread3 receives an ACK from Thread2, and Thread3
keeps to be 1-depth. After that, Thread2 restarts Tx.2 (t6),
and Thread2 issues load A and tries to issue store A
again (t7). Accordingly, the depth of Thread2 comes up to the
threshold 2 as Thread2 receives a NACK from Thread3 which
is 1-depth, and Thread2 sends an Abort Req to Thread3 (t8).
Therefore, Thread3 aborts its Tx.3 (t9). Then, Thread3 restarts
its Tx.3 and a conflict is caused again, as long as Thread1
does not commit Tx.1. In this case, Thread2 and Thread3 wait
each other despite one of the threads aborts its transaction,
and Thread2 and Thread3 restart repeatedly. Thus Backoff



cycles exponentially increase as the conflict is repeated unless
Thread1 commits Tx.1.

Next, the performance of Btree, Contention and Vacation
with (P1) is improved. In detail, the number of Stall cycles is
reduced to about a half, however, the number of Backoff cycles
increases to ten times at most. We examined these programs,
and it is found that these programs include long transactions,
and a situation as shown Fig.10 is caused frequently. Thus,
Cascading Stall is caused repeatedly, and Backoff cycles
exponentially increase as mentioned above. On the other hand,
the performance of Contention and Vacation with (P2) is
not improved. This is because 4-depth Cascading Stall rarely
occurs.

In contrast, the performance of Deque and Prioqueue with
(P1) and (P2) is improved. In these programs, Backoff occupies
most of the total cycles. With (P1), not only Stall but also
Backoff is reduced drastically. This is because wasteful stalls
and aborts are decreased drastically by resolving Cascading
Stall as soon as possible. As a result, the number of aborts
is reduced more than a half. On the other hand with (P2),
few threads reach the threshold 4 because only one small
transaction is included in each program. In short, Cascading
Stall is resolved by stalling transactions before threads reach
the threshold 4.

However, the performance of Radiosity with (P1) and (P2)
declines. We examined this program and it is found that
Radiosity has a transaction which causes conflicts frequently.
Thus, although Cascading Stall is resolved, conflicts due to
the transaction are caused repeatedly. As a result, the number
of aborts increases to about three times, and Backoff, Stall and
Bad trans cycles increase.

Next, the performance of Raytrace with (P1) is improved.
In this program, wasteful aborts are repeated frequently with
(B), thus, not only Non trans but also Backoff, Bad trans and
Aborting occupy most of the total cycles in this program.
However, wasteful stalls and aborts are avoided by resolving
Cascading Stall as soon as possible with (P1). Therefore,
Backoff, Bad trans and Aborting are reduced. On the other
hand, the performance is not improved with (P2). The reason
is that few threads reach the threshold 4 because transactions
are aborted due to frequent conflicts.

In contrast to the other programs, the performance of
Cholesky and Kmeans with the (P1) and (P2) is not improved.
This is because Stall occupies just a little of the total cycles
of these programs. Therefore, with the proposed HTMs (P1)
and (P2), the ratio of the performance improvement is smaller
than the other programs.

D. Abort Request Exchange Overhead

In this section, we examine the overhead for additional
messages for resolving Cascading Stall. The overhead of addi-
tional message Abort Req can be calculated as a multiplication
of a number which is how many times Abort Reqs are sent and
the link latency between cores. As shown in TABLE.I, the link
latency is assumed to be 14 cycles in this paper. We examined
all benchmark programs, and we found that Vacation has the

largest ratio of the overhead in all programs. In Vacation, Abort
Reqs are sent about four thousand times. Therefore, the total
overhead cycles of all 16 threads is about 4000×14 = 56000.
Besides, the total execution cycles of Vacation is about 160
millions. Thus, the overhead ratio is only about 0.035% in
maximum.

VI. CONCLUSIONS

In this paper, we propose a resolution of Cascading Stall to
avoid decline of concurrency. In order to detect Cascading
Stall, we define “depth” of conflicts, and Cascading Stall
is resolved when the depth of a thread reaches a threshold.
We evaluated the proposed HTM by comparing with LogTM,
through experiments with GEMS microbench, SPLASH-2
benchmark suite, and STAMP benchmark suite. The evaluation
results show that the proposed HTM decreases the total
execution cycles 56.5% in maximum and 11.1% in average
with 16 threads. However, in the case we define ‘2’ as the
threshold for the depth of Cascading Stall, conflicts can be
caused frequently and repeatedly at almost every time when
victim transactions are aborted in some programs. As a result,
such repeated conflicts make the number of Backoff cycles
increase exponentially. On the other hand, in the case we
define ‘4’ as the threshold, the number of times that depth
of each thread reaches the threshold is smaller than in the
case that we define ‘2’ as the threshold. Based on the above,
our future work is to consider which addresses are the factor
of conflicts when victim transactions are selected.

ACKNOWLEDGMENT

This research was partially supported by the grant from the
Tatematsu Foundation.

REFERENCES

[1] M. Herlihy et al., “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” in Proc. 20th Int’l Symp. on Computer
Architecture (ISCA’93), May. 1993, pp. 289–300.

[2] E. Akpinar, S. Tomić, A. Cristal, O. Unsal, and M. Valero, “A Compre-
hensive Study of Conflict Resolution Policies in Hardware Transactional
Memory,” in Proc. 6th ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT’11), 2011.

[3] N. Shavit et al., “Software Transactional Memory,” in Proc. 14th ACM
Symposium on Principles of Distributed Computing, 1995, pp. 204–213.

[4] K. E. Moore et al., “LogTM: Log-based Transactional Memory,” in Proc.
12th Int’l Symp. on High-Performance Computer Architecture, Feb. 2006,
pp. 254–265.

[5] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[6] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood., “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
Sep. 2005.

[7] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,” in
Proc. 22nd Annual Int’l. Symp. on Computer Architecture (ISCA’95),
1995, pp. 24–36.

[8] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
Transactional Applications for Multi-Processing,” in Proc. IEEE Int’l
Symp. on Workload Characterization (IISWC’08), Sep. 2008, pp. 35–46.




