
Automatic Code Tuning
for Improving GPU Resource Utilization

Ryo TAKESHIMA∗ and Tomoaki TSUMURA∗
∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Utilizing a GPU to perform general purpose com-
putation is called GPGPU. The high theoretical performance of
GPU draws attention to GPGPU. CUDA supplies a platform
for the developers of GPU applications. In CUDA programming
model, massive threads are allocated to GPU’s calculation units.
Besides, CUDA has various kinds of memories on GPU. These
memories have different features of access latency, capacity, and
so on. Therefore, to produce high-performance GPU programs,
developers should consider how to allocate the massive threads
to cores and which memory should be used for storing data.
Hence, developers should have deep understanding of the GPU
architecture and CUDA APIs. To address this problem, we
propose an auto tuning framework for GPU programs, and
explain an implementation of a preprocessor for the framework,
in this paper.

I. INTRODUCTION

Graphics Processing Unit (GPU) is a specialized pro-
cessor for image/video processing. GPU can deliver high-
performance with low power consumption when computing
in parallel. The high-performance of GPU attracts attention,
and GPGPU, which means a general purpose computation on
GPU, is now in demand. Accordingly, GPU is now widely
used as an acceleration core. Therefore, GPU programming for
using GPU as an acceleration core will be in more demand. For
such GPU programming, some platforms have been developed.
The most popular platform among them is CUDA (Compute
Unified Device Architecture)[1].

Using CUDA allows developers to write GPU programs
easily. However, tuning GPU programs is difficult, because de-
velopers should have deep understanding of GPU architecture
and CUDA APIs to tune GPU programs for high-performance.
In this paper, we propose an auto tuning framework, which
tunes GPU programs for high-performance without requiring
developers to mind GPU architecture and CUDA APIs. This
framework can automatically tune GPU programs aiming to
improve utilization of GPU resource. Furthermore, to conceal
a complicated memory configuration of GPU from developers,
this framework also can generate codes for transferring data
to suitable device memories in GPU automatically.

II. RESEARCH BACKGROUNDS

In this section, we will give overviews of CUDA and related
work for helping developers to produce GPU programs.

Block
(0, 0)

Block
(1, 0)
Block
(1, 1)

Block
(0, 1)

Block
(2, 0)
Block
(2, 1)

Grid

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(0,2,0)

Thread
(1,2,0)

Thread
(2,2,0)

Block(1, 0)
Thread
(0, 0, 0)

Thread
(1, 0, 0)

Thread
(2, 0, 0)

Thread
(0, 1, 0)

Thread
(1, 1, 0)

Thread
(2, 1, 0)

Thread
(0, 2, 0)

Thread
(1, 2, 0)

Thread
(2, 2, 0)

Fig. 1. Hierarchical thread management

A. CUDA

NVIDIA has provided a parallel computing platform CUDA
for GPU programming. Here, we will explain the CUDA pro-
gramming model, its memory configuration, and its execution
model.

1) Programming Model: GPU generally has wide memory
bandwidth and high processing, and CUDA-enabled GPUs
have dozens of processors. The processors are called Stream-
ing Multiprocessors (SMs). Each SM has dozens of CUDA
Cores, Load/Store Units, and Special Function Units (SFUs).
CUDA Core is an execution core for integer and floating-point
operations. Load/Store Unit is a unit for load/store operations.
SFU is a unit for complicated operations such as double-
precision arithmetic.

In CUDA programing model, GPU can achieve high perfor-
mance by executing massively parallel threads simultaneously
using SMs. These massive threads are managed hierarchically
as shown in Fig. 1. A set of threads is called a Block, and a
set of blocks is called a Grid. As shown in Fig. 1, Blocks in a
Grid are managed two-dimensionally, and threads in a Block
are managed three-dimensionally. The thread hierarchy allows
developers to handle massive threads easily. A definition of the
dimensions of the Grid and the Block is called an Execution
Configuration, and the dimensions of the Block, that is, the
number of the threads per Block is called Block size.

A program written with CUDA consists of a Host code and
a Device code. The host code is executed on CPU, and the
device code is executed on GPU. In the device code, each
routine which should be executed on GPU is defined as a
kernel function, and each kernel function call must specify an
execution configuration.

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 2nd Int'l Symp. on Computing and Networking (CANDAR'14), pp.419-425Copyright (C) 2014 IEEE



2) Memory Configuration: A CUDA-enabled GPU has
several types of memories; Global Memory, Texture Mem-
ory, Constant Memory, Register, Local Memory, and Shared
Memory. These are known generally as device memories. In
addition, a CUDA-enabled GPU has also several types of
caches; Global Cache (L2 Cache), Constant Cache, ReadOnly
Cache, and L1 Cache. Device memories and these caches have
different access latencies and capacities. Moreover, APIs used
for accessing data stored in them and for transferring data to
them are different according to device memories. Therefore, to
produce high-performance GPU programs, developers should
consider which memory should be used for storing data, and
should mind APIs which they should use. In other words,
developers should consider the complicated memory config-
uration of GPU and the correct APIs, when writing CUDA
programs.

3) Execution Model: As described in section II-A1, a
CUDA-enabled GPU can achieve high-performance by exe-
cuting massively parallel threads simultaneously. In CUDA,
32 threads in a set called Warp are executed simultaneously.
Each Warp is allocated to an SM, and all Warps which are
allocated to the SM are executed in out-of-order. However, an
SM cannot execute the Warp which is allocated to itself, in
the case when data, which are needed to execute the Warp, are
not available, or when the execution unit, which is needed to
execute the Warp, is not available. In such a case, the SM will
be idle. Therefore, it is important to allocate as many Warps
as possible to each SM for drawing out the GPU performance.

The number of Warps which can be allocated to one SM is
limited. Nevertheless, the number of Warps which are actually
allocated to one SM at run time can vary corresponding to the
number of Registers used in a kernel function, an amount of
Shared Memory used in a kernel function, and the number of
Registers which the SM has. The Warps which are actually
allocated to each SM at run time are called Active Warps.
The more Active Warps are allocated to each SM, the more
threads can be executed simultaneously. Therefore, the number
of Active Warps is an important index for measuring the
performance of a GPU program. In CUDA, this index is
quantified as Occupancy defined in section 10.1 of [1], and
it is calculated by dividing the number of Active Warps by
the maximum number of Warps which can be allocated to
each SM. In general, the performance of a GPU program is in
proportion to the Occupancy. However, the number of Active
Warps can intricately vary corresponding to the type of kernel
function or the hardware configuration of GPU. Therefore, it
is difficult to find out an Execution Configuration with which
the number of Active Warps is maximized. In other words, to
set an Execution Configuration which can achieve the highest
Occupancy is difficult.

B. C-to-CUDA Compilers

To produce GPU programs, developers should deeply un-
derstand GPU architecture and CUDA APIs. For allowing de-
velopers to produce GPU programs easily, some C-to-CUDA
compilers which translate a C programs into a CUDA program

have been proposed[2], [3], [4]. For example, hiCUDA[5],
[6], Bones[7], and Par4All[8] are well-known C-to-CUDA
compilers. When developers use hiCUDA compiler, they have
to insert some pragmas into a C program to give hiCUDA
compiler some parameters which are necessary to translate.
By using these parameters, hiCUDA compiler can translate
C programs into CUDA programs. Nevertheless, developers
should consider an Execution Configuration.

Similarly, developers have to insert some pragmas into a C
program to give Bones compiler some parameters which are
necessary to translation. In Bones compiler, various elemen-
tary algorithms are categorized. The categorized algorithms
are called Classes. Developers give Classes, each of which
corresponds to a code executed on the GPU, and the number
of threads created by each kernel function to Bones compiler.
By using these parameters, Bones compiler can translate C
programs into CUDA programs. However, Bones compiler
assigns an Execution Configuration to each kernel function
without considering the number of Registers and the amount
of Shared Memory used in the kernel function. That is, Bones
compiler assigns the Execution Configuration considering only
given Classes. Therefore, Bones compiler may assign an
inappropriate Execution Configuration to a kernel function.

In contrast to these compilers, Par4All compiler can trans-
late C programs into CUDA programs, without requiring the
developers to use directives. However, Par4All compiler can
translate only a loop statement only if the compiler can find
that the iterations of the loop have no dependency with each
other.

Therefore, Par4All compiler can translate only a part of a C
program into a CUDA program. That is, a processing which
is expected to be executed on GPU by developers cannot be
always executed on GPU.

III. DESIGN OF AUTO-TUNING FRAMEWORK

In this paper, we propose an auto tuning framework for
CUDA programs. This framework produces high-performance
CUDA programs without requiring developers to have deep
understanding of CUDA APIs and GPU architecture. In this
section, we describe the specifications of this framework.

A. Improvement of Execution Configuration

To assign an appropriate Execution Configuration to a kernel
function, it is important to consider the number of threads
which are created in the kernel function. In this paper, we set
the number of Block dimension and thread dimension in the
Execution Configuration to one dimension, because how many
dimensions in an Execution Configuration are set does not
affect the performance of CUDA programs. Now, we consider
how the performance of a kernel function is affected by the
number of threads which are created in the kernel function and
the Execution Configuration assigned to the kernel function.
Here, we focus on how Blocks are allocated to SMs.

In the case when the number of threads created in a kernel
function is small, the performance will depend on the Block
size. Now, we explain this reason using Fig. 2. This figure



GPU
SM
Warp
Warp

Block

Warp
Warp

Block

SM
Warp
Warp

Block
SM

(a) When Block size is large

GPU
SM SM SM

Warp
Block

Warp
Block

Warp
Block

Warp
Block

Warp
Block

Warp
Block

(b) When Block size is small

Fig. 2. Examples of allocating Blocks to SMs

shows how Blocks are allocated to SMs, in the case when the
number of threads created in a kernel function is small. For
simplicity, we assume that the number of Blocks which can be
allocated to each SM is at most two. In the case when a Block
can contain many Warps, or Block size is large, a few Blocks
are created, as shown in Fig. 2(a). In CUDA, as shown in this
figure, Blocks are allocated as many as possible to only one
SM. Then, the rest of the Blocks are allocated to other SMs. As
a result, the Blocks will be allocated to only a few SMs, and
the other SMs can be idle. Therefore, the total utilization of the
SMs will be low. On the other hand, a Block can contain only
a few Warps, or Block size is small, many Blocks are created,
as shown in Fig. 2(b). As a result, Blocks are allocated to
many SMs. Therefore, the total utilization of the SMs will be
high, because few or no SMs will be in the idle state. Hence,
in the case when the number of threads created in the kernel
function is small, Blocks should be allocated to as many SMs
as possible for an appropriate Execution Configuration.

On the other hand, in the case when the number of threads
created in the kernel function is large, Blocks will be allocated
to all SMs because the number of created Blocks will be
enough large regardless of their Block size. In this case, the
total utilization of the SMs can be high by utilizing each
SM as efficient as possible, because no SM will be idle. In
other words, in the case when massive threads are created
in a kernel function, an Execution Configuration which can
bring the highest Occupancy should be assigned to the kernel
function.

Considering these factors, we propose a framework which
automatically assigns an appropriate Execution Configuration
to a kernel function. On this framework, in the case when the
number of created threads is small, an Execution Configuration
which can bring no idle SM is assigned to the kernel function.
In order to assign such an Execution Configuration to the
kernel function, the Block size with which Blocks will be
allocated to all SMs is calculated. On the other hand, in the
case the number of created threads is large, an Execution
Configuration which can bring the highest Occupancy is
assigned to the kernel function. In order to assign such an
Execution Configuration to the kernel function, the Block
size which can bring the highest Occupancy is determined
by calculating Occupancy in various Block sizes, because
Occupancy varies corresponding to the Block size. If several
Block sizes can achieve the highest Occupancy, the Block size,
which includes the most threads, is selected. After the block

TABLE I
THE RULES FOR DECIDING WHICH MEMORY SHOULD BE USED

Shared Memory Among data sets which will be modified,
a data set which is the most frequently
accessed is located in this memory.

Constant Memory Among data sets which will not be modi-
fied, a data set which is the most frequently
accessed is located in this memory.

ReadOnly Cache Data sets which are used in some kernel
functions are located in this memory.

Global Memory The other data are located in this memory.

size is determined, the number of Blocks is calculated by
dividing the number of threads, which are created in the kernel
function, by the Block size. Thus, the number of Blocks and
the Block size, both of which are parameters of an Execution
Configuration, are determined.

However, the kernel functions whose Execution Configura-
tion can be optimized have a restriction. For example, devel-
opers will generally implement template matching programs
by allocating a thread to a pixel, and fitting Block size in
the total number of pixels in the template image. In such an
implementation, each Block compares the template image and
a part of the target image, and the Block size has a close
relation to the algorithm of the template matching program.
Therefore, the program may output a wrong result if the Block
size is changed. In such a program, the Execution Config-
uration should not be changed, because the meaning of the
program will be also changed. It is difficult to automatically
detect a kernel function whose Block size has close relation to
the algorithm of the kernel function. Hence, a developer should
specify each kernel function whose Execution Configuration
should be optimized, when using this framework.

B. Automatic Data Transfer

As mentioned in section II-A1, GPU has various memories
and caches. Since these memories and caches have different
features, a developer should consider the difference of them
and store each data set to a suitable memory. To conceal the
complicated memory configuration of GPU from developers,
the proposed framework can generate codes for automatically
transferring each data set to a suitable memory. On the
proposed framework, suitable APIs for transferring data to
device memories can be inserted into the target program. On
this framework, Constant Memory, Shared Memory, and Read-
Only Cache are used for data allocation, because the access
latencies of these memories are small. In this paper, we place
a restriction that data which can be stored in these memories
are only data sets in arrays, because which device memories
are allocated to scalar variables does not affect much the
performance of the kernel function. Now, we show the rules for
deciding which memory should be used for storing each data
set in TABLE I. These rules are defined for Kepler2 GPU[9].
For the high-performance kernel function, the utilization of
Shared Memory and ReadOnly Cache should be maximized,
because these memories can be accessed faster than Constant
Memory. However, these memories have a restriction that data



on these memories are discarded when returning from a kernel
function. Therefore, data sets which are used only in a kernel
function can be located in these memories. Among such data
sets, some data sets which will be modified can be located
in Shared Memory, because Shared Memory is writable and
readable. On the other hand, the other data sets which will
not be modified can be located in ReadOnly Cache, because
ReadOnly Cache is only readable. However, Shared Memory
and ReadOnly Cache have small capacity. Hence, only a data
set which is the most frequently accessed should be stored in
them. In contrast, data on Constant Memory are kept until
it is freed explicitly or the program execution is finished.
Therefore, in the case when a data set is used across some
kernel functions, once the data set is transferred to Constant
Memory, the data set need not to be transferred multiple times.
Specifically, such a data set should be transferred to Constant
Memory, before the kernel function in which the data set are
first used is executed. However, Constant Memory is only
readable. Therefore, among data sets which are used in some
kernel functions, data sets which will not be modified through
the program execution should be located in this memory, and
the other data should be located in Global Memory.

C. Description Format

To use our auto tuning framework, developers have to insert
pragmas into a target program. The reason why we adopt a
pragma is for high-extensibility and parsing simplicity. Devel-
opers should insert a pragma just before each kernel function
call whose Execution Configuration should be optimized. The
format of the pragma is as follows;

#pragma AUTO-CTA num threads
AUTO-CTA is the keyword for using this framework, and

num threads is the parameter for indicating the total number
of threads created in the kernel function. The parameter
num threads is indispensable for calculating the appropriate
Execution Configuration. As mentioned in section II-B, this
parameter is also necessary when using hiCUDA compiler and
Bones compiler.

IV. PREPROCESSOR FOR AUTO TUNING

We implemented the auto tuning framework as a prepro-
cessor. In this section, we will explain the design of the
preprocessor.

A. Processing Flow

The processing flow of the preprocessor consists of four
steps; parsing step, API insertion step, parameter collection
step, and translation step. In the first step, the preprocessor
parses a target program, and analyzes Host code and each
kernel function. Meanwhile, it determines whether each data
set should be transferred to device memories, then it selects a
suitable memory in which the data set should be stored. In the
second step, the preprocessor inserts some API calls into the
target program for transferring the data to device memories.
In the third step, the preprocessor collects parameters which

are necessary to determine the appropriate Execution Config-
uration. In the last step, it generates the code for assigning the
appropriate Execution Configuration to each kernel function
which is specified by the pragma. In the following section,
we will describe each step in detail.

B. Parsing Step

In this step, the preprocessor parses the target program, and
analyzes Host code and each kernel function. The preprocessor
manages analyzed kernel functions with a table called kernel
table. The preprocessor also uses tables called argument tables
for managing the arguments of kernel functions. One argument
table is prepared for every kernel function.

Scanning Host code, the preprocessor detects and analyzes
kernel function calls. When the preprocessor detects a function
call with an Execution Configuration specified, it can recog-
nize the function as a kernel function. Meanwhile, the set
of the function name and its argument variables is registered
into kernel-table. If the pragma described in section III-C is
inserted just before the kernel function, the variable in the
pragma for indicating the total number of threads is also
registered into kernel-table. For determining which memory
should be used for storing a data set of each formal argument,
the preprocessor begins to analyze each kernel function body
after scanning Host code.

First, the argument variables and their types are registered
into argument-table. Then, the preprocessor counts how many
times each argument variable is read in the kernel function
body, and registers the result into argument-table, for giving
priority to each formal argument. The reason for giving
priority to each formal argument is that not all data sets can
be stored in only one memory due to the memory capacity.
While counting read accesses on each argument variable, the
preprocessor also confirms whether the argument variable is
overwritten or not, and registers the result into argument-
table. This result is used for determining whether ReadOnly
Cache or Constant Memory can be used for storing the
data set in the argument variable. Therefore, for efficiently
utilizing device memories, the data set of the formal argument
which is the most frequently accessed is preferentially stored
in the memory whose access latency is small. Finally, the
preprocessor determines which memory should be used for
storing data in each formal argument based on the rule as
shown in TABLE I.

C. API insertion Step

In this step, the preprocessor inserts API calls into Host
code for transferring the data, which should be stored in device
memories, to a suitable device memory. Then, the preprocessor
replaces memory read/write statements, which developers use
in kernel functions for reading data from device memories and
writing data into device memories, with read/write API calls
which are suitable for device memories. In the following, we
will explain how the preprocessor inserts the API calls and
replaces memory read/write statements in detail.



First, the preprocessor scans Host code in order to determine
where the API calls should be inserted. At this time, the
preprocessor records the point where a datum in each scalar
variable and a data set in each array variable, which are
registered in kernel-table, will be overwritten. If a datum or a
data set is overwritten multiple times, the latest point before
the datum or the data set is passed to the kernel function is
selected. Moreover, the preprocessor records variable names,
if the data in the scalar variables or the data sets in the array
variables will be referred in Host code after executing the
kernel function. This is because the API calls for transferring
such data to the main memory should be inserted into the
target program. Next, the preprocessor inserts the suitable API
calls for device memories at the recorded points. Specifically,
the preprocessor inserts cudamalloc() for device memory
allocation and cudaMemcpy() for data transfer to device
memories. Then, the preprocessor inserts cudaMemcpy()
for data transfer to main memory at the points after the kernel
function call which takes the data as arguments. The API calls
are for writing back the data in scalar variables or the data sets
in array variables which are recorded by scanning the Host
code.

Finally, the preprocessor replaces memory read/write state-
ments in the kernel function body with suitable API calls
for reading data from device memories and writing data
into device memories. This is because the APIs are different
according to device memories as mentioned in section II-A2.

D. Parameter Collection Step

In this step, the preprocessor collects various parameters
which are necessary to calculate an Execution Configuration.
The parameters are as follows;

• the number of registers used in each kernel function body
• the amount of Shared Memory used in each kernel

function body
• the maximum number of the Warps which can be allo-

cated to each SM
• the amount of Shared Memory which each SM has
• GPU generation
• the number of registers which each SM has
• allocation unit size of a register
• allocation unit size of Shared Memory
• the number of Warps which are simultaneously allocated

In the following, we will explain how the preprocessor collects
these parameters in detail.

First, the preprocessor compiles the target program for
collecting some parameters. The parameters are the number
of registers and the amount of Shared Memory used in each
kernel function body.

Next, the preprocessor produces a program which includes
an API call cudaGetDeviceProp(), and collects other
parameters by executing the program. The parameters are the
maximum number of Warps which can be allocated to each
SM, the amount of Shared Memory which each SM has, and
GPU generation.

1 void calc Occupancy(int num T, int ∗cta){
2 if(num T < Threshold T){
3 for(Warps=1; SMs <= SMs max; Warps++){
4 /∗ Calculating the Block size with which Blocks
5 are allocated to as many SMs as possible ∗/
6 }
7 }
8 else{
9 for(Warps=1; Warps∗32 <= MAX B; Warps++){

10 /∗ Calculating the Block size
11 for achieving the highest Occupancy. ∗/
12 }
13 }
14 calculating the number of Blocks;
15 /∗ store the number of Blocks and the Block size
16 into the array cta.∗/
17 }

Fig. 3. The function for calculating Occupancy

1 threads = x ∗ y;
2 #pragma AUTO−CTA threads
3 kernel func<<<Blocks, BlockSize>>>(var1, var2);

(a) Before replaced

1 threads = x ∗ y;
2 int cta[2];
3 calc Occupancy(threads, cta);
4 kernel func<<<cta[0], cta[1]>>>(var1, var2);

(b) After replaced

Fig. 4. Examples of translating the code

Finally, the preprocessor searches the prepared database for
the other parameters by using the GPU generation as a key.
This is because the parameters are different according to GPU
generations and can not be collected by calling some CUDA
APIs.

E. Translation Step

In this step, the preprocessor generates the code for assign-
ing the appropriate Execution Configuration to each kernel
function. For assigning it, we prepare a function named
calc_Occupancy which calculates the appropriate Execu-
tion Configuration based on the Occupancy. This function
takes the number of threads created in the kernel function
as its argument, and the pointer to an array variable which is
used for returning the appropriate Execution Configuration(the
number of Blocks and Block size). In the following, we will
explain this function in detail.

Now, we show a pseudo code of the definition of
calc_Occupancy in Fig. 3. First, calc_Occupancy
determines whether the number of threads created in the kernel
function is less than the threshold or not (line 2), because
how to determine the Execution Configuration is different
from the number of threads created in the kernel function in
our proposed framework. If the number of threads which are
created in the kernel function is small, calc_Occupancy
determines the Block size with which Blocks will be allocated
to as many SMs as possible (line from 3 to 6). On the other
hand, if the number of threads which are created in the kernel
function is large, calc_Occupancy determines the Block
size with which SMs will be utilized maximum (line from 9



TABLE II
EVALUATION ENVIRONMENT

GPU 1GTX TITAN
GPU Generation Kepler2
Core Frequency 876 MHz
Memory Frequency 3004 MHz
Number of SMs 14 Cores

CPU Core i7-4770
Frequency 3.40 GHz

to 12). That is, this function determines the Block size for
achieving the highest Occupancy. Then, the number of Blocks
is calculated by dividing the number of threads passed as the
argument by the calculated Block size (line 14).

Now, let us see how the preprocessor translates codes for
assigning the appropriate Execution Configuration to each
kernel function. Fig. 4:(a) and Fig. 4:(b) show a part of Host
code before and after the translation respectively. First, the
preprocessor replaces the pragma ((a):line 2) with a declaration
of an array for storing the appropriate Execution Configuration
and with a function call ((b):line 2,3). Then, the preprocessor
assigns the appropriate Execution Configuration to the kernel
function ((b):line 4).

V. EVALUATION

We have evaluated the proposed preprocessor by comparing
execution time of kernel functions whose Execution Config-
uration is fixed and that of kernel functions tuned by the
preprocessor. This section describes the evaluation result.

A. Evaluation Environment

The evaluation environment is shown in the TABLE II.
We used Kepler2 GPU for evaluation. Workloads are four
benchmark programs in Rodinia Benchmark suite[10]. Specif-
ically, we used cfd, gaussian srad, bfs, and kmeans, which are
compiled with CUDA version 5.5.0 with ‘-O3’. The threshold
value which is used in calc_Occupancy is defined as 1024
in this evaluation.

B. Evaluation Result

Fig. 5 shows the results of the execution time of each
kernel function in the benchmark programs. We have evaluated
following 6 programs.

(R64 ) The program in which Block size of each Execution
Configuration is fixed to 64.

(R128) The program in which Block size of each Execution
Configuration is fixed to 128.

(R256) The program in which Block size of each Execution
Configuration is fixed to 256.

(R512) The program in which Block size of each Execution
Configuration is fixed to 512.

(P1) The program in which the optimized Execution Con-
figuration calculated by the preprocessor is used.

(P2) In addition to (P1), data allocation is automated by
the preprocessor.

Each bar is normalized to the execution time with the Execu-
tion Configuration which is originally used in the benchmark
programs. Among the benchmark programs, kmeans can not

run when Block size is fixed to 128 or 512. Therefore, we
leave out the execution results of kmeans with the Block size
128 and 512 in Fig. 5.

First, the execution time of each kernel function in
(P1) is close to the shortest execution time among
(R64), (R128), (R256), and (R512), with the exception of
six kernel functions; cuda compute flux, cuda time step,
cuda compute step factor, cuda initialize variables, Kernel1,
and Kernel2. Though, the exceptions perform no worse
than with the original Execution Configuration, as shown in
Fig. 5. As shown with cuda compute flux, cuda time step,
cuda compute step factor, Kernel1, and Kernel2, the execu-
tion time of the kernel functions can drastically be prolonged,
when developers assign an inappropriate Execution Config-
uration to kernel functions. Even if a developer unwittingly
assigned an inappropriate Execution Configuration to such the
kernel functions, the preprocessor can optimize the Execu-
tion Configuration and the performance deterioration can be
avoided.

Next, the execution time of each kernel function in
(P2) is shorter than the execution time in (P1) with
cuda compute flux, prepare, Kernel1, and invert mapping.
In particular, the execution time of cuda compute flux and
invert mapping are much reduced. To examine this reason,
we counted how many times each data set, which is located
in device memories except Global Memory, is accessed. As a
result, we found that such the data sets are frequently accessed
in these kernel functions because a part of each data set is also
used in a loop. Therefore, the execution time is reduced by
locating such data in a memory whose access latency is small.
However, the execution time of cuda compute step factor,
srad, compress, and kmeansPoint are prolonged a little. This
is because the data, which are used in these kernel functions
and located in device memories except Global Memory, are
not frequently accessed. As a result, the overhead for locating
such data in a memory with small access latency is larger than
the amount of the execution time which can be reduced.

In conclusion, the proposed preprocessor generally can
assign an appropriate Execution Configuration to each kernel
function, and locate data in suitable device memories. The
execution time of each kernel function in the benchmark
programs can be reduced by 7.78% in maximum and by 1.67%
in average by optimizing its Execution Configuration with
the proposed preprocessor. The execution time of each kernel
function in the benchmark programs can be reduced by 20.4%
in maximum and by 9.16% in average by automating data al-
location along with the Execution Configuration optimization.

VI. CONCLUSIONS

GPU has high theoretical performance. However, to exploit
the GPU performance, developers need to have deep under-
standing of the GPU architecture and CUDA APIs. In this pa-
per, we proposed an auto tuning framework for GPU programs,
and we implemented a preprocessor for the framework. This
preprocessor can automatically inserts the code for assigning
an appropriate execution configuration to each kernel function



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

cfd

cuda_compute_flux

cuda_time_step

cuda_compute_step_factor

cuda_initialize_variables

invert_mapping

kmeansPoint

gaussian
bfs

kmeans

(P1) : Optimization of the Execution Configuration

srad

reduce

prepare

extract

compress

srad

(R) : Block size is fixed to 
64
128
256
512

(P2) : (P1) + Automatic data allocation to device memories

Fan1

Fan2

srad2

Kernel1

Kernel2

Ra
tio

 o
f e

xe
cu

tio
n 

tim
e

Fig. 5. The evaluation result with Kepler2 GPU

specified by a developer. By using the preprocessor, developers
can generate high-performance CUDA programs.

One of our future works is to extend the preprocessor.
For example, a compiler implemented by Yang [11] translates
CUDA programs for improving the efficiency of memory ac-
cesses. We will extend the preprocessor for drawing the higher
performance of CUDA programs than that of CUDA programs
tuned by the preprocessor by improving the efficiency of
memory accesses like the compiler.

REFERENCES

[1] NVIDIA Corp., NVIDIA CUDA Programming Guide, 2nd ed., Jun. 2008.
[2] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-

CUDA Code Generation for Affine Programs,” in Proc. 19th Int’l Conf.
on Compiler Construction (CC), Mar. 2010, pp. 244–263.

[3] M. Wolfe, “Implementing the PGI Accelerator Model,” in Proc. of the
3rd Workshop on General-Purpose Computation on Graphics Processing
Units (GPGPU’10). ACM, 2010, pp. 43–50.

[4] J. Enmyren and C. W. Kessler, “SkePU: A Multi-backend Skele-
ton Programming Library for multi-GPU Systems,” in Proc. of 4th
Int’l Workshop on High-level Parallel Programming and Applications
(HLPP’10). ACM, 2010, pp. 5–14.

[5] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-Level GPGPU
Programming,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 1, pp. 78–90, Jan. 2011.

[6] ——, “hiCUDA: A High-level Directive-based Language for GPU Pro-
gramming,” in Proc. of 2nd Workshop on General Purpose Processing
on Graphics Processing Units (GPGPU-2). ACM, 2009, pp. 52–61.

[7] C. Nugteren and H. Corporaal, “Introducing ‘Bones’: A Parallelizing
Source-to-source Compiler Based on Algorithmic Skeletons,” in Proc.
5th Annual Workshop on General Purpose Processing with Graphics
Processing Units (GPGPU-5), March 2012, pp. 1–10.

[8] N. Ventroux, T. Sassolas, A. Guerre, B. Creusillet, and R. Keryell,
“SESAM/Par4All: A Tool for Joint Exploration of MPSoC Architectures
and Dynamic Dataflow Code Generation,” in Proc. 12th Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO’12), Jan. 2012, pp. 9–16.

[9] NVIDIA Corp., “NVIDIA’S Next Generation CUDA Compute Archi-
tecture: Kepler GK110,” Whitepaper, 2012.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in IEEE Int’l Symp. on Workload Characterization (IISWC), Oct.
2009, pp. 44–54.

[11] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU Compiler for
Memory Optimization and Parallelism Management,” in Proc. 10th ACM
SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), June 2010, pp. 86–97.




