
Auto-Parallelization for a Video Processing Library
with Content-Aware Resolution Management

Masahiro MIZUNO∗, Takuya MATSUNAGA∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗
∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—The performance of general purpose computers is
increasing rapidly, and now they are capable of running video
processing applications. However, on general purpose operating
systems, real-time video processing is still difficult because there
is no guarantee that enough CPU resources can surely be
provided. A pseudo real-time video processing library RaVioli
has been proposed for solving this issue. RaVioli conceals two
resolutions, frame rate and number of pixels, from programmers
and provides a dynamic and transparent resolution adjustability.
Namely, RaVioli regulates the processing load by automatically
modifying two resolutions according to CPU utilization. Besides,
RaVioli can divide a whole video frame into several sub-frames,
and process each sub-frame in different precisions considering
its importance. Using RaVioli, pseudo real-time video processing
can be achieved easily, but output precision may be extremely
roughened for reducing processing load even if each sub-frame
is processed with the suitable precision. To solve this problem,
we propose an auto-parallelization mechanism on RaVioli. We
aim to improve the processing precision with the mechanism.

I. INTRODUCTION

Real-time video processing applications such as surveillance
systems, smoke detection systems or automatic vehicle col-
lision avoidance systems are now in demand. On the other
hand, the processors for general-purpose computers have been
developed drastically. The performance of the processors has
been improved, and the cost has been reduced. Therefore, it
is also expected that the performance improvement and the
cost reduction will promote real-time video processing on the
general-purpose computers and operating systems. However,
it is still difficult to realize the real-time video processing on
general-purpose systems. The main reasons for the difficulty
are the fluctuations in the computation load of each frame and
in the amount of the available CPU resources.

To solve this problem, we have proposed a high-level video
processing library RaVioli (Resolution-Adaptable Video and
Image Operating Library)[1], [2] which guarantees real-time
processing on general-purpose computing systems. RaVioli
can regulate the processing load by automatically modifying
spatial resolution and frame rate according to CPU utilization.

For such dynamic modification of the resolutions, a pro-
gramming fashion which is independent of the resolutions is
required. RaVioli conceals two resolutions, spatial resolution
(i.e. pixel rate) and temporal resolution (i.e. frame rate), from
programmers for automatically changing the resolutions at
run-time. This can exclude the concept of resolutions from

video processing programming, and developers can write
video processing programs more intuitively.

Besides, RaVioli can divide a whole video frame into several
sub-frames, and process each sub-frame in different precisions
considering its importance[2]. This can keep the resolutions
for important areas high.

However, the output precision may be extremely roughened
for reducing processing load even if each sub-frame is pro-
cessed with suitable precision. It is inevitable that the output
precision is somewhat reduced for achieving realtimeness, but
the precision should be kept as high as possible.

In this paper, we propose an auto-parallelization mechanism
on RaVioli. We aim to improve the processing precision with
the mechanism.

II. RELATED WORK

A. Real-Time Video Processing

So far, several real-time video processing applications have
been developed. For example, Garcia-Martin et al.[3] have
presented a moving people detection for surveillance video
systems. Kim et al.[4] have proposed a method for early smoke
detection. Lin et al.[5] have presented a real-time eye detection
algorithm.

As described in section I, it is difficult to implement
real-time video processing applications on general-purpose
systems. This is because that the amount of the available
CPU resources or computation load can fluctuate. To solve this
problem, some methods for adjusting the processing load have
been proposed. Writing multiple routines with different algo-
rithms has been the most-used solution for the load adjustment.
One example is the imprecise computation model (ICM)[6].
In this model, computation accuracy varies corresponding to
the given computation time limit. With the confidence-driven
architecture [7], which is based on ICM, developers have
to troublesomely implement multiple routines with different
algorithms and different loads, and the confidence-driven ar-
chitecture selects suitable routine dynamically and empirically
among them. On the other hand, RaVioli can apply load-
adjustment to any video processing applications automatically.

B. Libraries and Programming Languages

Many image/video processing libraries have been also de-
veloped. Adopting template techniques similar to the C++

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 2nd Int'l Symp. on Computing and Networking (CANDAR'14), pp.185-191Copyright (C) 2014 IEEE

STL, VIGRA[8] allows developers to easily adapt given com-
ponents to their programs. OpenCV[9] provides many typical
image/video processing algorithms as C functions or C++
methods. OpenIP[10] provides a set of interoperable, open
source libraries, satisfying the demands of image processing
and computer vision in education, research and industry, as
well. Pandore[11] provides a set of executable image pro-
cessing operators. It is dedicated to image processing experts
because skills on image processing operations are needed to
use this library. These libraries provide high-level descriptivity
of image/video processing, but adjusting computation load is
difficult to be implemented with them.

Some programming languages for image processing
also have been proposed. A loopless image processing
language[12], for example, allows developers to implement
image processing for embedded devices without any knowl-
edge about the processors or memory architectures. With this
language, developers can operate arrays without using loops
in programs with some special operators. However, developers
have to write programs with a formula editor and consider
array sizes.

Halide[13] is another programming language specialized
for image processing. In Halide programs, the algorithm for
image processing and parallelization procedure are separated,
and developers can try several scheduling for parallelization
without modifying the core algorithm for image processing.
However, this means that Halide requires developers to have
knowledge of not only image processing but also efficient
parallelization.

The approach of the library RaVioli[1], [2] is completely
different from such existing computation models or im-
age/video processing libraries and languages. RaVioli allows
programmers to be unaware of the existence of pixels and
frames through their video processing programming. Con-
cealing pixels and frames from programmers, RaVioli can
change spatial/temporal resolutions and can adjust processing
load dynamically and automatically. RaVioli also can support
various platforms such as Cell/B.E. or CUDA GPUs.

III. OVERVIEW OF RAVIOLI

A. Abstraction of Image and Video Processing

Two resolutions, spatial resolution and temporal resolution
of a video, are derived from the necessity of quantization on
computers, and are not natural. We human beings naturally
have no concept of resolutions through our visual recognition.
For example, even though we can recognize object motion
in our view without any pixel or frame, developers should
consider resolutions for implementing a motion object detec-
tion application on computer systems. Hence, the presence of
resolutions makes video processing programs unintuitive.

To solve this problem, RaVioli provides a new programming
paradigm which conceals two resolutions spatial resolution
and temporal resolution, from programmers. Hence, with
RaVioli, developers can implement video processing applica-
tions without considering pixels and frames. Developers also
can easily implement real-time video processing applications

program

for(y = 0; y < 480; y++)
for(x = 0; x < 640; x++)
new.pixel[x][y]
= GrayScale(img.pixel[x][y]);

(a) Traditional program.

RV_Image img

procPix

procTpl

procNbr

higher-order method

100%

100%

640

480

program

RV_Image* img;
img->procPix(GrayScale);

(b) Program with RaVioli.

Fig. 1. Digital image processing.

because RaVioli can automatically vary resolutions for adjust-
ing computation load and achieving realtimeness.

Generally, loop iterations are heavily used in video process-
ing programs. When converting a color image to grayscale,
for example, each pixel will be converted to grayscale in
the innermost iteration, and the process is repeated for every
pixel by loop nests as shown in Fig. 1(a). In the case of
neighborhood processing such as blur or edge enhancement,
the processed unit is a set of a pixel and its neighbor pixels,
and in the case of template matching, the processed unit is a
small window in each frame. These units are processed in the
innermost iteration, and the process is applied repeatedly by
loop structures.

For using a double loop structure for image processing,
programmers should know the height and the width of the
image for defining the number of iterations of loops. On
the other hand, with RaVioli, an image is encapsulated in
an RV Image instance, and this repetitious processing for
all pixels is applied by RaVioli automatically, so developers
should only write a routine for one pixel as shown in Fig. 1(b).

GrayScale() in Fig. 1(b) is a routine defined by a developer.
What developers should do are defining a function which
processes one pixel and passing the function to one of the
image instance’s public methods. We call this type of function
a component function. In this example, the component function
GrayScale() is passed to procPix(), which is defined as a
higher-order method of the RV Image class. It applies a
function passed as its argument to all pixels in the RV Image
instance one after another. This framework allows developers
to be released from resolutions and the number of iterations.

Not only procPix(), RaVioli also provides some higher-
order methods for several processing patterns; such as template
matching, k-neighbor processing, and so on. As same as an im-
age, a video is also encapsulated in an RV Streaming instance
in RaVioli. Frames, the components of an RV Streaming
instance, are concealed from developers. An RV Streaming
instance also has several higher-order methods. Developers
should only define a component function, which manages one
frame, and pass the function to an appropriate higher-order

(a) Spatial stride and resolution.

(b) Temporal stride and resolution.

Fig. 2. Changing processing resolution by stride access.

method of an RV Streaming instance for video processing.

B. Real-Time Processing by Adjusting Computation Load

1) Resolution Adjustment: On general purpose systems,
multiple processes are running concurrently. Hence, it is
difficult to implement real-time video processing applications
on such systems, because there is no guarantee that enough
CPU resources can surely be provided. One solution for this
problem is reducing computation load by roughly processing
the video data, or reducing the resolution of the video. RaVi-
oli can change spatial and temporal resolutions dynamically
and automatically according to the available CPU resources,
because RaVioli conceals resolutions from programmers.

RaVioli has two internal parameters; spatial stride (SS)
and temporal stride (ST), and RaVioli changes processing
resolutions by varying these parameters. Fig. 2(a) shows the
relation between the value of spatial stride and the processing
spatial resolution. Initially the value of spatial stride SS = 1,
and all pixels in each frame are processed. When the value
of spatial stride is increased to SS = 2, every other pixel is
processed and the processing spatial resolution is roughened,
and the whole processing load is reduced to 1/4. For reducing
the load more, spatial stride should be increased to SS = 3
and the load is reduced to 1/9.

Likewise, the relation between the value of temporal stride
and the temporal resolution is shown in Fig. 2(b). Initially,
the value of temporal stride ST = 1 and all frames are
processed. When the value of temporal stride is increased to
ST = 2, the temporal resolution is reduced by processing
every other frame, and the whole computation load is reduced
to 1/2. If the value of temporal stride becomes ST = 3,
the whole processing load is reduced to 1/3. As mentioned
above, RaVioli can automatically vary resolutions for adjusting
computation load and achieving realtimeness.

(a) Base and rough spatial strides.

(b) Base and rough temporal strides.

Fig. 3. Base stride and rough stride.

Fig. 4. An example of locating medium stride areas.

2) Content-Aware Resolution Management: In real-time
video processing, some part of a frame will be an important
area and should be processed precisely, but other part is not
necessary to be processed precisely. From this perspective,
RaVioli provides the content-aware resolution management[2].
Specifically, RaVioli can divide a whole video frame into
several sub-frames, and process each sub-frame in different
precisions considering its importance. For achieving the high
processing precision of the important sub-frame, multiple
options of spatial/temporal stride is provided for each video
sub-frame. RaVioli provides three spatial/temporal strides;
base stride, rough stride, and medium stride.

Base stride is a stride option for important areas. Important
areas should be processed as precise as possible, and the value
of base stride is set as small as possible.

On the other hand, rough stride is a stride for unimportant
areas. Unimportant areas should be processed in low resolution
to reduce whole processing load for achieving real-time video
processing. Hence, the value of rough stride is defined as larger
than base stride.

Now, Fig. 3(a) and Fig. 3(b) shows how base stride and

rough stride are applied to spatial and temporal resolutions. In
both figures, a video stream is divided into 2× 2 sub-streams,
and the boundaries are depicted by dashed lines. First, if spatial
base stride SS = 1, unimportant sub-frames are processed with
rough spatial stride 2, as shown in the left side of Fig. 3(a).
In this case, the whole processing load of a frame is reduced
to 5/8, compared with the load when the whole frame is
processed with SS = 1. If SS = 2, the value of rough stride
is 4, as shown in the right side of Fig. 3(a). In this case, the
whole processing load of a frame is reduced to 5/32.

On the other hand, if temporal base stride ST = 1,
unimportant sub-streams are processed with rough temporal
stride 2, as shown in the left side of Fig. 3(b). In other words,
the unimportant areas in one of the each two frames will not
be processed and the result of the previous frame is used. In
this case, the whole processing load of this video is reduced
to 3/4. If base temporal stride ST becomes 2, rough temporal
stride becomes 4, as shown in the right side of Fig. 3(b). In
this case, the whole processing load is reduced to 3/8.

Next, medium stride is a stride option for preferential areas.
The areas which may become important soon can be defined
as preferential areas, and the resolutions of them are kept
relatively high. Therefore, the value of medium stride is set
between the value of base stride and the value of rough stride.
This means that, an area processed with medium stride can
reduce computation load compared with an area processed
with base stride, and can detect changes rapidly in input videos
compared with an area processed with rough stride.

Incidentally, we regard the areas where some change ap-
pears as important areas for realtime video processing. The
location of important areas will vary because the contents
of input video frames are changing every moment. However,
there are some characteristics of such important input sub-
frames. Considering these characteristics, preferential areas
can be defined manually and automatically.

Now, let us see how one of the three strides is selected
for each sub-frame in Fig. 4. In this example, assume that
a surveillance system is implemented with RaVioli. In this
figure, input frame are divided into sub-frames, and division
is specified as 5 × 5. The number of sub-frames can be
defined manually by programmers. The black-colored sub-
frame means that the sub-frame is processed with base stride.
Similarly, the gray and white-colored sub-frame means that
they are processed with medium and rough stride respectively.
The two sub-frames which cover the door are manually defined
as preferential areas, because it is predictable that these areas
are changeable. In the first frame, there is no change in the
input, and the two preferential sub-frames use medium stride,
and the other sub-frames use rough stride. In the second frame,
an intruder appears from the door, and the input changes.
Hence, base stride is applied to the sub-frames on the intruder.
Then, the sub-frames around the current important sub-frames
are automatically defined as preferential areas, because the
important area will be located around the current important
area soon. After that, if the intruder moves, appropriate strides
are applied to all sub-frames according to the input as shown

in the third frame in Fig. 4.

C. Problem with RaVioli

As mentioned above, RaVioli can keep the resolutions
for important areas high. However, output precision may be
extremely roughened for reducing processing load even if the
suitable importance is set to each sub-frame. It is inevitable
that the output precision is somewhat reduced for achieving
realtimeness, but the precision should be kept as high as
possible.

In this paper, to restrain a deterioration of the output
precision, we propose an auto-parallelization mechanism on
RaVioli. Using the mechanism, a sequential RaVioli program
can be automatically translated into a parallel program. The
mechanism also provides a load balancing algorithm which
is suitable for the content-aware resolution management.
We aim to improve the processing precision with the auto-
parallelization mechanism.

IV. AUTO-PARALLELIZATION

In this section, we will describe a preprocessor which
automatically translates a sequential RaVioli program into a
parallel program. Then, we will also describe the problem of
the preprocessor and an improvement of the preprocessor.

A. Preprocessor for Auto-Parallelization

Now, multi/many-core processors have come into wide use.
It becomes, therefore, much important to improve compilers
and libraries for multicore processors being fully utilized.

Generally, loop iterations are heavily used in image process-
ing programs and the loop body is applied to the units, such as
pixels, repeatedly by loop structures as mentioned in section
III-A. The loop iterations can run in parallel by utilizing
data-parallelism unless the loop has data dependency between
iterations. However, parallelizing a loop can cause access
conflicts on shared variables. To avoid such conflicts, reduction
operations are generally used. Using reduction operations,
each loop iteration can be executed completely independently.

For parallelizing image processing programs, programmers
must deal with data dependencies between loop iterations, or
access conflicts on global variables. To solve this problem, we
have proposed a preprocessor [1] which automatically trans-
lates a sequential RaVioli program into a parallel program.

In an image processing program using RaVioli, some com-
ponent functions are defined and they are applied to image
instances through higher-order methods as described in section
III-A. Incidentally, loop iterations which programmers usually
write by themselves are now absorbed into RaVioli. Therefore,
in a program using RaVioli, the preprocessor can detect
parallelism easily and can conceal parallel processing from
programmers. However, as mentioned above, access conflicts
on shared variables may appear when executing RaVioli pro-
grams. To avoid such conflicts, when the previous preprocessor
detects a global variable which satisfies the following both
criteria, it decides that the variable needs a reduction operation.

m-mizuno
ハイライト表示
入力は5x5の領域に分割される
この領域数はプログラマによって定義される．

という文をつけたします

m-mizuno
ハイライト表示
順序依存の判定のための条件は桜井さん論文にやはり記述されていました

m-mizuno
ノート注釈
誤字がありましたので修正しました

1. int min=INT_MAX, sum=0;
2. RV_Coord tmps, tmpe;
3.
4. void Compare(RV_Pixel *p1, RV_Pixel p2){
5. int r1, g1, b1, r2, g2, b2;
6. p1->getRGB(r1, g1, b1);
7. p2.get(r2, g2, b2);
8. sum += absd(r1-r2)+absd(g1-g2)+absd(b1-b2);
9. }
10.
11. void countTP(RV_DoppImg* window, RV_Coord Cs,RV_Coord Ce){
12. window->procImgComp(Compare, input_tp); //calling higher-order method
13. if(min > sum){
14. min = sum;
15. tmps = Cs;
16. tmpe = Ce;
17. }
18. sum = 0;
19. }
20.
21. int main(int argc, char* argc[]){
22. RV_Image* input_img;
23. input_img = new RV_img(); //input an image
24. input_img ->procBox(CountTP); //calling higher-order method
25. return 0;

26. }

sequential program

Fig. 5. Template matching program before translation.

1: Some value is written to the global variable in a
component function.

2: The global variable is not used in a component
function which has data dependency between loop
iterations.

If a global variable satisfies the both criteria, the previous pre-
processor automatically inserts codes of reduction operations
and translates the target variable into a reduction variable.
When a global variable is detected in a component function
and decided as a variable which needs a reduction operation,
an additional reduction variable will be defined as a thread-
local storage (TLS). Thread-local variables can be specified
by __thread directive and can be used for storing a local re-
sult which each thread calculates. After parallel processing has
finished, values of reduction variables are gathered together.

However, the previous preprocessor cannot generate re-
duction codes for all the kinds of global variables because
__thread directive cannot be used for the instances of
RaVioli-specific classes. To solve this problem, we improve
the preprocessor to be able to define a reduction variable
for RaVioli-specific classes as an array which has as many
elements as the number of threads. The number of threads
is not specified by programmers but can be acquired by
the preprocessor. RaVioli uses OpenMP[14] for parallel pro-
cessing. OpenMP is suitable for parallelization of the image
processing because OpenMP can parallelize loops easily by
using compiler directives called pragma. By using the routine
omp_get_max_threads() of OpenMP before translating
program, the proposed preprocessor can acquire the maximum
number of thread. As well, the proposed preprocessor also
adopts the above criteria to decide whether global instances

1. int min=INT_MAX, sum=0;
2. __thread int __min=INT＿MAX, __sum=0;
3. RV_Coord tmps,tmpe;
4. RV_Coord __tmps[4],__tmpe[4];
5.
6. void Compare(RV_Pixel *p1, RV_Pixel p2){
7. int r1, g1, b1, r2, g2, b2;
8. p1->getRGB(r1, g1, b1);
9. p2.get(r2, g2, b2);
10. __sum+=absd(r1-r2)+absd(g1-g2)+absd(b1-b2);
11. }
12.
13. void CountTP(RV_DoppImg* window, RV_Coord Cs, RV_Coord Ce){
14. int thID = omp_get_thread_num();
15. window->procImgComp(Compare, input_tp); //calling higher-order method
16. if(__min > __sum){
17. __min = __sum;
18. __tmps[thID] = Cs;
19. __tmpe[thID] = Ce;
20. }
21. __sum = 0;
22. }
23.
24. void reductionCountTP(){
25. int thID = omp_get_thread_num();
26. sum += __sum;
27. if(min > __min){
28. min = __min;
29. tmps = __tmps[thID];
30. tmpe = __tmpe[thID];
31. }
32. }
33.
34. int main(int argc, char* argc[]){
35. RV_Image* input_img;
36. input_img = new RV_img(); //input an image
37. input_img->reduction(reductionCountTP);
38. input_img ->procBox(CountTP); //calling higher-order method
39. return 0;
40. }

parallel program

Fig. 6. Template matching program after translation.

of RaVioli-specific classes need reduction operations or not.
Now, let us see how the proposed preprocessor automati-

cally inserts codes of reduction operations and translates target
global variables into reduction variables. Fig. 5 and Fig. 6
show template matching programs before and after the transla-
tion respectively. In both programs, the function CountTP is
a component function for comparing the template-image and
each partial-image which are cut out from the whole image.
The function Compare called in the function CountTP is
also a component function which calculates difference between
two images. The variables sum, min, tmps and tmpe
are global variables, hence the preprocessor translates these
variables into reduction variables. In particular, the variables
tmps and tmpe are the instances of RaVioli-specific classes.

Now, we explain how the proposed preprocessor translates
a sequential RaVioli program into a parallel program. At
first, the preprocessor declares thread-local variables __min
and __sum as reduction variables for min and sum using
__thread directive. (line 2 in Fig. 6). On the other hand, the
variable tmps and tmpe are the instances of RaVioli-specific
classes, hence reduction variables for tmps and tmpe are
declared as arrays (line 4 in Fig. 6). Next, the preprocessor
generates the code for calculating the local results (line 10
and line from 16 to 22 in Fig. 6) and the function for

m-mizuno
ハイライト表示
OpenMPはループ文を容易に並列化できるため，画像処理の並列化に適している．

という文をつけたします

gathering them (line from 24 to 32 in Fig. 6). The function
for gathering the local results needs to be called by each
thread at the end of parallel processing. In RaVioli, such
a function can be processed exclusively by being passed to
a higher-order method. Hence, the preprocessor inserts the
call of this function into the program (line 37 in Fig. 6). As
well, to get the thread ID for distinguishing storage area of
each thread, the preprocessor inserts the call of the function
omp_get_thread_num (line 14 and 25 in Fig. 6).

B. Load Balancing between Threads

As mentioned above, the proposed preprocessor automati-
cally parallelizes a RaVioli program, and improves the pro-
cessing precision. In this section, we explain a load balancing
algorithm considering the sub-frames which have different
precisions. When multiple threads run in parallel, the com-
putation load of each thread should be balanced. Now, if
each thread processes the same number of sub-frames, the
computation load allocated to each thread may be unbalanced.
This is because the processing load of each sub-frame varies
depending on its stride value. Now, we explain an example of
such an unbalanced situation using Fig. 7 and Fig. 8. Fig. 7
shows an example of an input frame. In Fig. 7, boxes indicate
sub-frames and they are color-coded according to their stride
values. When each thread processes the same number of sub-
frames, the sub-frames are allocated to the threads as shown
in Fig. 8. This task allocation can make the computation load
of each thread imbalanced. Besides this task allocation, a
dynamic scheduling is well known. This scheduling allocates
tasks to each thread according to the processing time of the
thread. However the cost of this scheduling is not small,
and the load balancing of the computation load between
threads is not optimazed. To prevent such load imbalance,
we adopt a load balancing algorithm which considers the
difference of processing load between sub-frames. For the
content-aware resolution management, RaVioli sets suitable
stride (e.g. base-stride, rough-stride and medium stride) to
sub-frames according to their importance. Using these stride
values, the ratio of the processing load of sub-frames can be
calculated easily. Specifically, when the ratio of base, medium,
and rough stride values is 1:2:4, the ratio of processing load
can be estimated as 16:4:1. Using this estimated ratio, we aim
to balance computation load of each thread.

Following the algorithm, each sub-frame is allocated to one
of the threads in descending order of its processing load. The
processing load of allocated sub-frames is accumulated to each
threads. Then the thread which has the least total load will be
selected and the next sub-frame will be allocated to the thread.
With this algorithm, sub-frames are allocated to the threads as
shown in Fig. 9 and more efficient parallel processing can be
achieved.

V. EVALUATION RESULTS

We evaluated whether RaVioli with the proposed auto-
parallelization mechanism can improve the processing preci-

X
X
X

X : Sub-frame ID

: Base stride

: Medium stride

: Rough stride

Fig. 7. An example of content-aware resolution mapping.

Th1

Th2

Th3

Th4

1 5 9 13 17 21 25

10 14 18 22

11 15 19 23

2 6

3 7

4 8 12 16 20 24

X
X

X
the processing load of the sub-frame which medium stride is set to

base stride

rough stride

Fig. 8. An example of imbalanced task allocation.

Th1

Th2

Th3

Th4

17

18

22

23

5

10

11

12

13

14

16

19

21

24

1 3 6 8

2 4 7 9

15

20

25

Fig. 9. Balanced task allocation considering the precision of each sub-frame.

sion than the previous RaVioli. The evaluation environment is
shown in TABLE I.

For this evaluation, we used a template matching program
for searching a face in profile. The input video stream is
composed of 100 frames and the spatial input resolution is
1024×768. We set the ratio of base, midium, and rough stride
values to 1:2:4. We evaluated and compared two video pro-
cessing results; (a) without an auto-parallelization mechanism
and (b) with the proposed auto-parallelization mechanism.
Fig. 10 shows these resulting outputs of the 80th frame. In
the result (a), the face in profile of the walking person can
not be processed precisely. On the other hand in the result
(b), deterioration in the precision of the face in profile of
the walking person can be restrained than in the result (a).
The above results lead to the conclusion that video process-
ing applications with proposed RaVioli can achieve both of
realtimeness and high precision processing results.

The fluctuation of spatial base stride is shown in Fig. 11.
The horizontal axis shows the input frame indices, and the
vertical axis shows the value of stride. The vertical gray line
in the figure indicates the 80th frame shown in Fig. 10. In
the result (b), spatial base stride can be kept lower than the
previous RaVioli. On the other hand, in the result (b), temporal
base stride can be kept lower than the previous RaVioli just
like spatial base stride. TABLE II shows the average value
of spatial stride and the average value of base stride. As
shown in this table, deterioration in processing precision can
be restrained by the proposed auto-parallelization mechanism.

m-mizuno
ノート注釈
25の色が間違っていましたので修正しました

m-mizuno
ハイライト表示
動的スケジューリングの説明と問題点をつけたしました．

m-mizuno
ハイライト表示
ベース，中間，ラフの設定を追加しました

(a) Resulting outputs without an auto-parallelization mechanism. (b) Resulting outputs with the proposed auto-parallelization mechanism.

Fig. 10. Outputs of the 80th frames.

TABLE I
EVALUATION ENVIRONMENT.

OS CentOS 6.4
CPU Intel Core i7-4770

(4cores/8threads)
Frequency 4.0GHz
Memory 16GB
Compiler gcc 4.6.0

Compiler options -O3, -fopenmp

TABLE II
AVERAGE BASE STRIDES.

spatial temporal
without an auto-parallelization mechanism 3.71 2.75
with the proposed auto-parallelization mechanism 2.82 2.50

VI. CONCLUSION

In this paper, we improved the preprocessor which automat-
ically translates a sequential RaVioli program into a parallel
program. The preprocessor also provides a load balancing
algorithm which is suitable for the content-aware resolution
management.

Through an evaluation with a template matching program, it
is found that the RaVioli program which is automatically gen-
erated by the proposed preprocessor can restrain deterioration
in processing precision.

One of our future works is finding a better task allocation
to threads for real-time video processing. We implemented
a task allocation for balancing the computation load of each
thread, however, for real-time processing, it is also important
to shorten time which is taken to allocate tasks. If we consider
this point, we can achieve further improvement of the output
precision.

Sp
at

ia
l S

tr
id

e

Number of frame

Fig. 11. The fluctuation of temporal base stride.

REFERENCES

[1] H. Sakurai, M. Ohno, T. Tsumura, and H. Matsuo, “RaVioli: a Parallel
Video Processing Library with Auto Resolution Adjustability,” in Proc.
IADIS Int’l. Conf. Applied Computing 2009, vol. 1, Nov. 2009, pp. 321–
329.

[2] T. Matsunaga, S. Ohira, T. Tsumura, and H. Matsuo, “Content-Aware
Precision Control on a Real-Time Video Processing Library,” in Proc.
2013 Int’l Conf. on High Performance Computing and Simulation
(HPCS2013), Jul. 2013, pp. 453–460.

[3] A. Garcia-Martin and J. M. Martinez, “Robust Real Time Moving People
Detection in Surveillance Scenarios,” in Proc. 7th IEEE Int’l Conf.
on Advanced Video and Signal Based Surveillance (AVSS’10). IEEE
Computer Society, Aug. 2010, pp. 241–247.

[4] C. Kim, Y. Han, Y. Seo, and H. il Kang, “Statistical Pattern Based
Real-time Smoke Detection Using DWT Energy,” in Proc. Int’l Conf.on
Information Science and Applications. IEEE Computer Society, Apr.
2011, pp. 1–7.

[5] K. Lin, J. Huang, J. Chen, and C. Zhou, “Real-time Eye Detection in
Video Streams,” in Proc. 4th Int’l Conf. on Natural Computation, vol. 06.
IEEE Computer Society, Oct. 2008, pp. 193–197.

[6] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
Computations,” in Proceedings of the IEEE, vol. 82, Jan. 1994, pp. 83–
94.

[7] H. Yoshimoto, N. Date, D. Arita, and R. Taniguchi, “Confidence-Driven
Architecture for Real-time Vision Processing and Its Application to
Efficient Vision-based Human Motion Sensing,” in Proc. 17th Int’l.
Conf. on Pattern Recognition (ICPR’04), vol. 1, 2004, pp. 736–740.

m-mizuno
ハイライト表示
コア数/スレッド数を追加しました

[8] U. Köthe, “Generic programming for computer vision: The vigra com-
puter vision library,” http://hci.iwr.uni-heidelberg.de/vigra/, Sep. 2011.

[9] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision With
the OpenCV Library. O’Reilly & Associates Inc, 2008.

[10] G. Kovács, J. I. Iván, Árpád Pányik, and A. Fazekas, “The openIP Open
Source Image Processing Library,” in Proc. Int’l Conf. on Multimedia
(MM’10). ACM, 2010, pp. 1489–1492.

[11] Greyc Laboratory, Pandore: A library of image processing operators.,
6.6.5 ed., Jul. 2014.

[12] J. Segawa and T. Kanai, “The Array Processing Language and the
Parallel Execution Method for Multicore Platforms,” Proc. 1st Int’l
Symp. on Information and Computer Elements, pp. 98–103, 2007.

[13] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. P.
Amarasinghe., “Halide: A language and Compiler for Optimizing Par-
allelism, Locality, and Recomputation in Image Processing Pipelines,”
in Proc. 34th ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI ’13). ACM, 2013, pp. 519–530.

[14] L. Dagum and R. Menon, “OpenMP: an Industry Standard API for
Shared-Memory Programming,” IEEE Computational Science and En-
gineering, vol. 5, pp. 46–55, 1998.

