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Abstract—We have proposed an auto-memoization processor
based on computation reuse. The auto-memoization processor
dynamically detects functions and loop iterations as reusable
blocks, and memoizes them automatically. In the past model,
computation reuse cannot be applied if the current input se-
quence even differs by only one input value from the past input
sequences, since processing results will differ. This paper proposes
a new partial reuse model, which can apply computation reuse
to the early part of a reusable block as long as the early part of
the current input sequence matches one of the past sequences. In
addition, in order to acquire sufficient benefit from the partial
reuse model, we also propose a technique that reduces the
searching overhead for memoization table by partitioning it. The
result of the experiment with SPEC CPU95 suite benchmarks
shows that the new method improves the maximum speedup
from 40.6% to 55.1%, and the average speedup from 10.6% to
22.8%.

Index Terms—microprocessor architecture, computation reuse,
memoization, auto-memoization processor.

I. INTRODUCTION

So far, various speed-up techniques for microprocessors
have been proposed. The performance of microprocessors had
been controlled by the gate latencies, and it had been rela-
tively easy to speed-up microprocessors by transistor scaling.
However, the interconnect delay has been going major, and
it has become difficult to achieve speed-up only by higher
clock frequency. Therefore, speed-up techniques based on ILP
(Instruction-Level Parallelism), such as superscalar or SIMD
instruction sets, have been counted on.

Recently, multi-core processors equipped with two or more
cores attract a great deal of attention. They are now in wide use
from generic processors for PCs to embedded processors[1].
The SPARC T4[2] with eight cores, the Opteron[3] with 16
cores, and the TILE64[4] with 64 cores are available now, and
many-core processors such as the TILE-Gx processor[5] with
100 cores are planned to be shipped.

A program generally forms a poset, or a lattice. It has
a length along time axis, and has a width (i.e. parallelism)
orthogonal to time axis. Traditional speed-up techniques men-
tioned above are all based on some parallelisms in different
granularities. In other words, their approaches aim to increase
performance by shrinking the width of the program lattice.

On the other hand, we have proposed an auto-memoization
processor based on computation reuse[6][7]. In contrast to
traditional speed-up techniques for microprocessors, memo-
ization, or computation reuse, tries to shrink the length of
the program lattice. As a speedup technique, memoization
has no relation to parallelism of programs. It depends upon
value locality, especially input values of functions or loops.
Therefore, memoization has a potential for breaking through
the stone wall against which the speedup techniques based on
ILP have been up.

The auto-memoization processor dynamically detects func-
tions and loop iterations as reusable blocks, and memoizes
them automatically. In the past model, computation reuse
cannot be applied if the current input sequence even differs
by only one input value from the past input sequences, since
processing results will differ.

In this paper, we propose a new partial reuse model, which
can apply computation reuse to the early part of a reusable
block as long as the early part of the current input sequence
matches one of the past sequences. In addition, in order to
acquire sufficient benefit from the partial reuse model, we also
propose a technique that reduces the searching overhead for
memoization table by partitioning it.

II. RELATED WORK

Studies for extracting ILPs with speculative executions
based on value prediction have been proposed by Lipasti
et al.[8] or Wang et al.[9] Many speculative multi-threading
(SpMT) models also have been proposed. They have multiple
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processors or cores, and run threads speculatively using pre-
dicted value sets. In an SpMT model, a speculative thread will
generally squashed when its input values are overwritten by
the main thread.

Roth et al.[10] have proposed register integration. It is a
mechanism for reusing the results of squashed instructions by
writing back the past register mapping. It is shown that the
model can provide performance improvements of up to 11.5%.

Tuck et al.[11] have proposed single fetch path multi-
threaded value prediction. In this prediction model, whenever
the executing thread is stopped by cache misses, a new
speculative thread, which uses the predicted value as the
load value, is spawned and executed. After that, whenever a
fetched load value matches the predicted value, this prediction
model writes back the outputs of the speculative thread, which
corresponds to the predicted value, to the cache.

Some hybrid methods of computation reuse and value
prediction have been also studied. Wu et al.[12] have proposed
a speculative multi-threading supported by computation reuse.
In the model, the compiler identifies instruction regions for
reuse or value prediction. At runtime, if a region cannot
be reused, the processor predicts the outputs of the region,
and speculatively executes its following instructions using
the predicted values. Hence, if the value prediction fails,
the speculative executions should be squashed, and it costs
additional hardware and overhead for the squash.

Molina et al.[13][14] have proposed a combination model of
speculative thread and non-speculative thread. The execution
results of speculative thread are stored into the FIFO called
a look ahead buffer, and non-speculative thread picks up
instructions from the FIFO. If the current source operands and
the stored operands are same, the non-speculative thread reuses
the execution results and skips execution.

Some compiler technologies for SpMT models have been
also studied. Bhowmik et al.[15] have proposed a general com-
piler framework for a wide variety of SpMT architectures. This
compiler considers data dependencies, control dependencies
and thread size together and exploits parallelism from not only
loops but also non-loop regions.

Li et al.[16] have proposed a cost estimation model for
SpMT systems. This model estimates the overhead of SpMT
quantitatively and computes the effect of SpMT. The compu-
tational result can be used to determine whether SpMT leads
to a good performance or a bad performance.

Gao et al.[17][18] have proposed loop recreation. It is a
technique for decreasing inter-iteration dependencies by re-
structuring a loop. The compiler constructs a data dependency
graph of a loop and solves a min-cut problem on the graph.

In contrast to these studies, the parallel speculative exe-
cution model we have proposed is a non-symmetric SpMT
model based on value prediction, and uses computation reuse
technique. Our model has two advantages over [12]. The
one is that there is no need to be assisted by compiler for
computation reuse. The other is that there is no need to squash
speculative executions. Molina’s model [13] is similar to our
model. However, our model can reuse some instruction regions

Fig. 1. Structure of Auto-Memoization Processor.

which require memory read as their inputs.

III. RESEARCH BACKGROUND

In this section, we describe the auto-memoization processor
which we have proposed, and its behavior as the background
of our study.

A. Auto-Memoization Processor

Computation reuse is a well-known speed-up technique
in the software field. It is storing the input sequences and the
results of some computation blocks, such as functions, for later
reuse and avoiding recomputing them when the current input
sequence matches one of the past input sequences. It is called
memoization[19] to apply computation reuse to computation
blocks in programs.

Memoization is originally a programming technique for
speed-up, and brings good results on expensive functions[20].
However, it requires rewrite of target programs, and the
traditional load-modules or binaries cannot benefit from mem-
oization. Furthermore, the effectiveness of memoization is
influenced much by programming styles. Rewriting programs
using memoization occasionally makes the programs slower.
Memoization costs a certain overhead because it is imple-
mented by software.

On the other hand, the auto-memoization processor, which
we have proposed, makes traditional load-modules faster
without any software assist. There is no need to rewrite
or recompile programs. The auto-memoization processor dy-
namically detects functions and loop iterations as reusable
blocks, and memoizes them automatically. However, a loop
iteration, which uses its iterator variable as one of its inputs,
never benefits from memoization. Hence, we have installed
some speculative cores to our auto-memoization processor for
reusing loop iterations. The brief structure of the processor is
shown in Fig.1.

The auto-memoization processor consists of the memoiza-
tion engine, MemoTbl and MemoBuf. MemoTbl is a set
of tables for storing input/output sequences of past executed
computation blocks. MemoBuf works as a write buffer for
MemoTbl.



1 int a = 3, b = 4, c = 8;
2 int calc(x){
3 int tmp = x + 1;
4 tmp = tmp + a;
5 if(tmp < 7)
6 tmp = tmp + b;
7 else
8 tmp = tmp + c;
9 return(tmp);

10 }
11 int main(void){
12 calc(2); /∗ x = 2, a = 3, b = 4 ∗/
13 b = 5; calc(2); /∗ x = 2, a = 3, b = 5 ∗/
14 a = 4; calc(2); /∗ x = 2, a = 4, c = 8 ∗/
15 a = 3; calc(2); /∗ x = 2, a = 3, b = 5 ∗/
16 return(0);
17 }

Fig. 2. A sample code.

Fig. 3. Tree of input sequences.

Entering to a memoizable region, the processor refers to
MemoTbl and compares the current input sequence with
former input sequences which are stored in MemoTbl. If
the current input sequence matches one of the stored input
sequences on MemoTbl, the memoization engine writes back
the stored outputs, associated with the input sequence, to the
registers and caches. This omits the execution of the region
and reduces the total execution time.

If the current input sequence does not match any past input
sequence, the processor stores the inputs and the outputs of the
region into MemoBuf while executing the region as usual. The
input sequence consists of the register/memory values which
are read over the region, and the output sequence consists of
the values which are written. If the region is a function, its
return value is also included in the output sequence. Reaching
the end of the region, the memoization engine stores the
content of MemoBuf into MemoTbl for future reuse.

MemoBuf has multiple entries, whose entries correspond to
input/output sequences. A MemoBuf entry has a stack pointer
(SP) and a return address (retOfs). A MemoBuf entry also has
an input sequence (Read) and an output sequence (Write).

Now, an input sequence for a certain instruction region can
be represented as a sequence of tuples, each of which contains
an address and a value. In a certain instruction region, the
series of input addresses sometimes branch off from each
other. For example, after a branch instruction, what address
will be referred next relies on whether the branch was taken
or untaken. Therefore, the universal set of the different input
sequences for an instruction region can be represented as a
multiway input tree. Here, input sequences of a memoizable

Fig. 4. Structure of MemoTbl.

region are represented as a way from its root to a leaf on this
tree. Hence, the auto-memoization processor should hold input
sequences as a tree structure.

For example, if the processor executes the sample program
shown in Fig.2, the tree structure of input sequences for the
function calc will be formed as shown in Fig.3. Each node
of the tree represents input values, and each edge represents a
relationship that the input values represented by the connected
nodes are referred to sequentially. Here, End represents the
terminal of a sequence and each input sequences (i), (ii) and
(iii) corresponds to the function call at line 12, 13 and 14
respectively in the sample code. In the input sequence (i) and
(ii), the variable b is read as the third input, whereas the
variable c is read in the input sequence (iii). This is because
that the results of branch instruction at line 5 differs, owing
to that the value of the second input variable a changes.

Next, let us see about the structure of MemoTbl shown in
Fig.4. MemoTbl consists of four tables:

FLTbl: for start addresses of instruction regions.
InTbl: for input data sets of instruction regions.
AddrTbl: for input address sets of instruction regions.
OutTbl: for output data sets of instruction regions.
FLTbl, AddrTbl, and OutTbl are implemented with RAM.

On the other hand, InTbl is implemented with a ternary CAM
(Content Addressable Memory), so that input matching can be
done fast by associative search.

Each FLTbl line corresponds to a reusable computation
block. One FLTbl entry has two groups of fields, the one
is for computation reuse and the other is for the overhead
filter which will be explained later in III-C. The fields for
computation reuse hold whether the block is a function or a
loop (F or L) and the start address of the block (addr). The
fields for the overhead filter hold the execution cycles of the
region (Step) and its past reuse overhead (Ovh).

Each InTbl entry has an index for FLTbl (FLTbl idx), which
represents the associated instruction region, or computation
block, of the input stored in the entry. Each InTbl entry can
hold single cache line, and an input sequence over multiple
cache lines is registered onto InTbl by using several entries.
An InTbl entry holds an index key for parent entry (key) and
input values (input values). When a variable is read as an input



Fig. 5. Input matching flow on MemoTbl.

value, its whole cache line is stored in an InTbl entry, masking
unreferred values with don’t care bits.

An AddrTbl entry has an input address which should be
tested next (next adr). AddrTbl has the same number of entries
as InTbl entries, and each AddrTbl entry corresponds to the
InTbl entry which has the same index. An AddrTbl entry has
a flag (ec flag), which shows whether it is the terminal entry
of an input sequence, and if it is terminal, it has a valid pointer
(OutTbl idx), which refers to an OutTbl entry for associated
outputs.

An OutTbl entry has addresses (output addr) and values
(output values) of an output sequence. An OutTbl entry also
has an index for next OutTbl entry (next idx) because an output
sequence is stored over multiple OutTbl entries.

As mentioned before, the auto-memoization processor also
has some speculative cores. While the main core executes
a memoizable computation block, speculative cores execute
the same block using predicted inputs, and stores the results
into MemoTbl. The inputs are predicted by stride prediction
using the last two input sequences stored in FLTbl. If the input
prediction succeeds, the main core can omit intended execution
by reusing the result registered by one of the speculative cores.

Here, the bandwidth of MemoTbl does not matter. The
speculative cores have their own MemoBuf, and their write
access to MemoTbl will shift off each other because specu-
lative executions are issued sequentially. Hence, there occur
little conflicts while accessing to MemoTbl.

B. Execution Mechanism

Fig.5 shows how the input sequences shown in Fig.3 are
registered onto InTbl/AddrTbl. Here, X in input values repre-
sents a don’t care nibble in the cache line, and will not be
tested for computation reuse. Furthermore, 0x200, 0x210
and 0x220 in next addr correspond to the variable a, b and c
in Fig.2. In addition, Fig.5 also shows an input matching flow
on MemoTbl as (a)...(f). This flow represents the reuse test
for the function call at line 15 in Fig.2. First, the processor
reads the values of registers when the start address of the
reusable instruction region is detected. Then, the processor
searches the root entry whose key is FF and whose input values
match the values on the current registers. Now, (a) the line
00 matches. Next, (b) the address of 0x200 is read because
next addr of the entry 00 in AddrTbl indicates 0x200. Then,
(c) the processor searches the entry whose key is 00 and

whose input values match the values of 0x200. This process
is (d)(e) applied repeatedly until a mismatch of input values
occurs. In this example, all reuse tests for the current input
values succeed. Therefore (f) the processor can get the output
values by using the index of OutTbl idx stored in the terminal
entry. Finally, the processor writes back the output values
to the registers and caches. This omits the execution of the
instruction region and reduces the total execution time.

Meanwhile, accessing MemoTbl causes overhead inevitably.
Through input matching, searching InTbl, referring AddrTbl,
and reading caches cost a certain time. When input matching
has succeeded, outputs of the reusable block should be written
back from OutTbl. This also costs some cycles. We call these
two kinds of overheads ‘reuse overheads.’

C. Overhead Filter

For some reusable blocks, reuse overhead may outweigh the
eliminated execution cycles by reuse. This will go for some
blocks which have many input values to be tested, and all tiny
blocks. Hence, the auto-memoization processor has a structure
which estimates the effect of reuse, and avoids memoizing
unsuitable computation blocks. With the execution cycles step
of the block, the processor calculates the performance gain in
terms of omitted cycles as

step − OvhR − OvhW (1)

where OvhR and OvhW represent search/writeback overheads
for the computation block respectively. If this value is negative,
applying memoization will decrease the performance, and the
processor stops reusing the block.

IV. APPLYING PARTIAL COMPUTATION REUSE

In this section, we will propose a new processor model
which can reuse instruction regions partially.

A. Execution Model of Partial Reuse

In the past model, computation reuse is abandoned if
the current input sequence even differs by only one input
value from the past input sequences, since processing results
will differ. In addition, search overheads for such instruction
regions are wholly added to the execution cycles. However,
execution results for the early part of a reusable region should
be same as long as the early part of the current input sequence
matches one of the past input sequences. For example in Fig.2,
when the function calc is called at line 12, the value of
the variable b is 4. On the other hand, when the function
calc is called at line 13, the value of the variable b is
5. Therefore, traditional auto-memoization processor fails to
reuse calc because the input values do not match completely
any of the past input sequences. In fact, the return values of
these function calls are different, since the return value of
the second function call is 11 while the value of the first
function call is 10. However, between these two function
calls, values of the argument x and the global variable a are
unchanged. Therefore, when calc is called at line 13, the
processor can start execution from at line 6, if it can write



back the value 6 to the local variable tmp. Similarly, when
only the values of variable x are same, the processor can start
execution from at line 4 if it can write back the value 3 to the
local variable tmp. Consequently, even if the processor fails
input matching, the execution of the instruction region can
be partially omitted by writing back the intermediate results
which correspond to the matched inputs. Hence, we propose a
new partial reuse model, which can apply computation reuse
to the early part of the reusable region as long as the early
part of the current input sequence matches one of the past
input sequences stored in MemoTbl. This method enables the
auto-memoization processor to omit not only functions or loop
iterations but also more smaller instruction regions, and some
speedup will be achieved. In the following, we call this new
reuse method ‘partial computation reuse’ and the traditional
reuse method ‘full computation reuse.’

B. Reuse Table Partitioning

As mentioned before, the processor acquires ability to reuse
instruction regions partially. However, partial computation
reuse can reduce less execution cycles per reuse as compared
with full computation reuse. Hence, partial computation reuse
will be easily influenced by the reuse overhead. Incidentally,
the search overhead can be reduced by reducing CAM’s
access latency because InTbl is constructed by CAM. The
access latency of the CAM depends on its depth[21], and
we also propose a technique for reducing reuse overhead
by partitioning MemoTbl into multiple small tables. Given
the number of partition N , the traditional InTbl, which has
the width of 32Bytes and the depth of 4K, is horizontally
partitioned into N sub-InTbls. Each sub-InTbl has the width
of 32Bytes and the depth of 4K/N . Likewise, AddrTbl is
horizontally partitioned into N sub-AddrTbls because each
AddrTbl entry is correspond to an InTbl entry which has the
same index.

To store input entries efficiently over multiple sub-InTbls,
overconcentration of input entries in one sub-InTbl should be
avoided. Therefore, when storing a new entry, it should be
stored into the least crowded sub-InTbl. However, all input
entries which have same parent entry should be stored into
the same sub-InTbl. This feature enables the auto-memoization
processor to distinguish whether the next input entry exists or
not on sub-InTbls by just searching through single sub-InTbl.

As mentioned in the previous section, the overhead filter
stops applying computation reuse to the instruction regions
which are considered as unsuitable for computation reuse.
Now, reducing the search overhead may lead to increasing
the number of instruction regions whose performance can
be improved by applying computation reuse. Therefore, with
reuse table partitioning the overhead filter will less frequently
stop applying computation reuse to instruction regions, and
the reuse hit rate for such instruction regions will raise.

V. IMPLEMENTATION

This section describes an implementation of the new reuse
model.

Fig. 6. Structure of expanded MemoBuf.

Fig. 7. Structure of expanded MemoTbl.

A. Hardware Extension

For partial computation reuse and reuse table partitioning,
we have added some fields on MemoBuf and MemoTbl. The
fields are shown with shade in Fig.6 and Fig.7. We will discuss
the extensions for these two techniques separately.

1) Extension for Partial Computation Reuse: To achieve
partial computation reuse, the new partial reuse model has
to write back intermediate results of a function. In addition,
it has to restart execution from the intermediate instruction
in the function. Hence, we have added the new field PC for
storing a program counter value, which represents where to
be restarted, into Read fields in MemoBuf and AddrTbl in
MemoTbl. Since outputs from partial computation reuse, or
intermediate results, include the value of local variables of the
functions, these values should be stored on the new partial
reuse model. Hence, we have added the new 1-bit flag field
local for distinguish whether the output values are global
values or local values. With partial computation reuse, the
output values correspond to the region, where input values
are same so far, should be written back. For this reason, such
output values are stored into MemoBuf while executing the
function, but will be modified before reaching the end of the
function. Therefore, the memoization engine stores the current
partial outputs into OutTbl whenever a new input value is read.
On the other hand, the memoization engine stores all input
values into MemoTbl when the processor reaches the end of
the function as usual. Therefore, MemoBuf should remember
indices to OutTbl entries until the processor reaches the end of
the function. Hence, we have added the field Out for storing
indices to OutTbl entries into Read fields in MemoBuf. Now,
AddrTbl also has to hold indices to OutTbl entries, but we do
not need to add new field since the OutTbl idx in AddrTbl
can be used for this purpose. In the traditional model, this
field is used only in the terminal entry of each input sequence



to hold the index to its corresponding output sequence for
full computation reuse. However, an output entry may be
purged from OutTbl before the corresponding input entry is
purged. Hence, we have added the new 1-bit flag field part
for distinguishing whether the output values are valid or not.

2) Extension for Reuse Table Partitioning: To achieve reuse
table partitioning, the new reuse model has to store input en-
tries over multiple sub-InTbls, keeping a correct tree structure
of input sequences. In addition, to avoid searching all sub-
InTbls, input entries which have the same parent entry should
be stored into same sub-InTbl. Therefore, each AddrTbl entry
has to remember the index to sub-InTbl entry which should be
accessed next. Hence, we have added the new field next InTbl
for these indices. Furthermore, to avoid overconcentration of
input entries in one sub-InTbl, we have added the counter
Counters for storing how many entries are stored into the sub-
InTbl.

In the new reuse model, each input sequence should have an
output sequence for full computation reuse and some output
sequences for partial computation reuse in OutTbl. Thus, it
may decrease in performance due to running out of free space
on OutTbl caused by storing more numerous output entries
into OutTbl than the traditional model. To avoid this problem,
we set a limit that partial computation reuse is applied only
to functions, and not to loops. The execution cycles, which
can be reduced by applying partial computation reuse to loop
iterations, should be very few. Hence, this limit will not affect
the performance. Furthermore, to avoid running out of free
space on OutTbl, we increased the OutTbl size. OutTbl is
implemented with not CAM but RAM, so increasing the size
of OutTbl is not so serious. We will mention the assumed size
of OutTbl in section VI.

B. Registering to MemoTbl

In the new reuse model, while executing functions, the
memoization engine stores the inputs and the outputs of the
function into MemoBuf as the traditional model. Then, if a
local variable is modified, the output is stored into MemoBuf
and its local flag is set. In addition, when a new input value
is read, the current output entries on MemoBuf are stored
into MemoTbl. Then, the index of the OutTbl entry and the
current value of PC are stored into the newest input entry of
MemoBuf. Reaching the end of the function, the memoization
engine stores each output entry, if whose local flag is not set,
on MemoBuf into MemoTbl. Then, the memoization engine
refers the counters of sub-InTbls, and stores the new entry on
the least crowded sub-InTbl, and sets next InTbl of the parent
entry in AddrTbl to an index to the new entry.

C. Searching through MemoTbl

Fig.8 shows the state of MemoTbl when the processor
completes the execution of the line 12 of the program shown
in Fig.2, and also shows an input matching flow on MemoTbl
as (a)...(g). Let us see this flow in the new reuse model.

When the function calc is called at line 13, the processor
searches the root entry, whose key is FF and whose input

Fig. 8. Input matching flow on expanded MemoTbl.

values match the values of the current registers, through
InTbl#0 which is indicated by next InTbl in FLTbl. Now, (a)
the line 00 matches. Then, the processor notices that it is able
to apply partial computation reuse because part of the entry 00
in AddrTbl is set as valid. Therefore, the processor holds this
entry index 00 until the end of input matching. Next, (b) the
address of 0x200 is read because next addr of the entry 00
in AddrTbl indicates 0x200, and (c) the processor searches
the entry, whose key is 00 and whose input values match the
value of 0x200, through InTbl#1 which is indicated by next
InTbl of the entry 00 in AddrTbl. Then, part of the entry 10
in AddrTbl is also valid, and the processor updates the entry
index, which has been stored for partial computation reuse,
from 00 to 10. This is because the output indicated by 10
omits more execution cycles than the former output indicated
by 00. After that, (d)(e) the processor fails full computation
reuse because next input value b does not match.

Then, the new reuse model applies partial computation reuse
by using the stored index 10. The processor first (f) gets the
output sequence from OutTbl by using the index of OutTbl idx
stored in the entry 10 in AddrTbl, (g) writes back the output
sequence to the registers and caches, and restart execution
from 0x114 which is indicated by the entry 10 in AddrTbl.

VI. PERFORMANCE EVALUATION

A. Simulation Environment

We have developed a single-issue SPARC-V8 simulator
equipped with the auto-memoization mechanisms and the
three speculative cores. In this section, we will discuss the
performance of the new reuse model proposed in this pa-
per. The simulation parameters are shown in TABLE I. The
cache structure and the instruction latencies are based on
SPARC64-III[22]. The on-chip CAM for InTbl in MemoTbl
is modeled on DC18288[23] (32Bytes × 4K lines). On the
other hand, the small CAM for sub-InTbl is modeled on
eFlexCAM[24](32Bytes × 256 lines). For the reuse table
partitioning model, we constructed InTbl with 16 small CAMs.
The latencies of these two types of CAMs are defined on the
assumption that the clock of the processor is about 2 GHz, and
is 10-times faster than the CAM for the traditional model, and
4-times faster than the small CAM for the new reuse model.



TABLE I
SIMULATION PARAMETERS

MemoBuf 64 KBytes
MemoTbl CAM 128 KBytes
MemoTbl small CAM 8 KBytes
Comparison (register and CAM) 9 cycles/32Bytes
Comparison (Cache and CAM) 10 cycles/32Bytes
Comparison (register and small CAM) 3 cycles/32Bytes
Comparison (Cache and small CAM) 4 cycles/32Bytes
Write back (MemoTbl to Reg./Cache) 1 cycle/32Bytes
D1 cache 32 KBytes

line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles/set

TABLE II
REDUCED EXECUTION CYCLES. (SPEC CPU95)

Mean Max
(M) Traditional memoization model 10.6% 40.6%
(P) Partial reuse model 11.0% 40.7%
(S) Reuse table partitioning model 22.5% 55.1%
(C) Hybrid model of (P) and (S) 22.8% 55.1%

In the new reuse model, we increased the size of OutTbl from
4K lines to 32K lines.

B. Execution Cycles with SPEC CPU95

We have evaluated the execution cycles. Workloads are all
benchmark programs in SPEC CPU95 suites and are executed
with ‘train’ dataset. All benchmark programs are compiled by
gcc version 3.0.2 with ‘-msupersparc -O2’ options, and linked
statically. The evaluation results are shown in TABLE II and
Fig.9. We have evaluated following five models,

(N) No-memoization model (baseline)
(M) Traditional memoization model
(P) Partially reusing model
(S) Reuse table partitioning model
(C) Hybrid model of (P) and (S)

and Fig.9 shows the execution cycles of these models. Each
bar is normalized to the number of executed cycles of (N) the
model without memoization.

The legend in Fig.9 shows the breakdown items of total
cycles. They represent the executed instruction cycles (‘exec’),
the comparison overhead between CAM and the registers or
the caches (‘read’), the writeback overhead (‘write’), the first-
level and shared second-level data cache miss penalties (‘D$1’,
‘D$2’), and the register window miss penalty (‘window’)
respectively.

First, note that the new reuse model (P) reduces the ‘exec’
of some benchmark programs such as 124.m88ksim, 134.perl,
147.vortex and 141.apsi. This means that some instruction

1 000317f0<killtime>:
2 317f0: sethi %hi(0x236800), %o1
3 :
4 31814: ld [ %o2 + %o4 ], %o0
5 :
6 31834: bpos 31814 <killtime+0x24>

7 31838: add %o2, 4, %o2
8 :
9 3189c: ld [ %o2 + %o4 ], %o1

10 :
11 318c4: retl
12 318c8: nop

Fig. 10. An assembly code of killtime function.

regions, which are not reused with the traditional model, are
reused by partial reuse with the new reuse model (P).

Especially, in the execution cycles of 124.m88ksim, not
only ‘exec’ but also ‘read’ is reduced. Fig.10 shows the
assembly code of the most partially reused function in
124.m88ksim: killtime. In this program, the bpos instruc-
tion at 0x31834 is a branch instruction, and the instruction
region from 0x31814 to 0x31834 is a loop. With the
traditional model (M), the processor fails to apply computa-
tion reuse to the function killtime, and executes it from
0x317f0 as usual. Next, the processor tries to reuse the loop
and causes a certain search overhead. On the other hand, in
the new reuse model (P), the execution of instruction region
from 0x317f0 to 0x3189c is omitted by applying partial
computation reuse to the function killtime. Because of this,
the total search overhead is reduced.

However, for the benchmark programs other than
124.m88ksim，134.perl，147.vortex and 141.apsi, we cannot
see the benefit from new reuse model (P), because the over-
head filter stops applying both full computation reuse and
partial computation reuse to the most of functions.

Next, note that the new reuse model (S) reduces the ‘read’
of some benchmark programs such as 124.m88ksim, 134.perl
and 107mgrid. This means that the search overhead is reduced
by partitioning reuse table. Also, in the results of many pro-
grams, not only ‘read’ but also ‘exec’ is considerably reduced.
As we expected in section IV-B, this is because that the
overhead filter stops applying computation reuse to instruction
regions less frequently, and the reuse hit rate for instruction
regions raises with the new reuse model. On the other hand,
‘exec’ of 147.vortex is increased and the performance of the
program declines. This reason is that more instruction regions
are registered onto MemoTbl, and instruction regions which
are reused with the traditional model may be purged away
from MemoTbl before they are reused. The usage efficiency
of InTbl could be decreased by partitioning InTbl into multiple
sub-InTbl, but the evaluation results show that the efficiency
is not decreased for most of benchmark programs. We have
verified that the performance degradation by partitioning InTbl
is about 0.5% in average. This means that even the naive policy
that the new entry is stored into the sub-InTbl with the fewest



Fig. 9. Ratio of cycles (SPEC CPU95).

valid entries works well for usage efficiency of InTbl.

Finally with the hybrid model (C), ‘exec’ cycles of some
benchmark programs such as 099.go, 124.m88ksim, 134.perl,
147.vortex and 141.apsi are reduced in compared with both
(P) and (S). The execution cycles of these programs other than
099.go are reduced also with the model (P). This means that
two speedup techniques which we proposed have produced
good synergistic effect. Through the execution of 099.go, the
overhead filter stops applying computation reuse to instruction
regions less frequently than with the traditional model (M),
because the search overhead is reduced by partitioning reuse
table. Hence, with the new hybrid model (C), more instruction
regions are tried to be reused and more functions are partially
reused than the reuse model (P). In fact, 12.0% of functions
are partially reused with the new hybrid model (C) whereas
few functions are partially reused with the model (P). This
means that reducing the overhead makes the partial computa-
tion reuse more effective.

Incidentally, we have proposed the unwinding model[7]
previously. This model integrates multiple continuous itera-
tions into one reusable block and detects how many iterations
should be integrated into one reusable block automatically.
The unwinding model has reduced execution cycles by a
maximum of 57.6%, and an average of 26.0% with SPEC
CPU95 FP benchmark suite. On the other hand, the hybrid
model (C) proposed in this paper can reduce execution cycles
by a maximum of 55.1%, and an average of 30.9%. Therefore,
this hybrid model (C) is better than the unwinding model

totally. However, these two models may be merged together
for achieving further speed-up.

Moreover, compared with parallel execution on a multi-core
processor assisted by some automatic parallelization compil-
ers, the hardware cost and the energy consumption of the
auto-memoization processor is fairly larger, because ternary
CAMs are required for its implementation. Furthermore,
some parallelization-friendly workloads, such as 101.tomcatv,
102.swim, 104.hydro2d or 107.mgrid from SPEC CPU95 FP
benchmark suite, will show a greater performance gain with
parallel execution than with the auto-memoization processor.
However, the auto-memoization processor has some advan-
tages against parallelization. First of all, the auto-memoization
processor is completely binary compatible, and there needs
no software assist such as recompilation. Secondly, programs
which have no potential parallelism can gain performance with
memoization. Additionally, memoization and parallelization
are not mutually exclusive, and they can complement each
other.

In conclusion, the performance of the new hybrid model
(C) is better than the traditional model (M) as a whole. The
model (C) improves the maximum speedup from 40.6% to
55.1%, and the average from 10.6% to 22.8%.

VII. CONCLUSIONS

In this paper, we proposed a new partial reuse model, which
can apply computation reuse to the early part of a reusable
block as long as the early part of the current input sequence
matches one of the past input sequences. In addition, in order



to acquire sufficient benefit from partial reuse model, we also
proposed a technique that reduces the search overhead for the
memoization table by partitioning it. Through an evaluation
with SPEC CPU95 suite benchmark programs, it is found that
the new model improves the maximum speedup ratio from
40.6% to 55.1%, and the average ratio from 10.6% to 22.8%.

One of our future works is merging this model with other
low-overhead models such as [25] that we had proposed. In
this paper, we have implemented this partial reuse model on a
simple single-issue processor architecture. Implementing this
model on more recent architecture such as superscaler, and
trying to merge other ILP-based methods and the memoization
mechanism are also our future works.
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